Search
for
while
1, -1, 1, -1, 1, -1, ...
$$ \qquad\pi = 4 \sum_{k=0}^\infty\dfrac{(-1)^k}{2k+1} = \dfrac{4}{1}-\dfrac{4}{3}+\dfrac{4}{5}-\dfrac{4}{7}+\dfrac{4}{9}-\dfrac{4}{11}+\cdots $$