\[ \def\_#1{\mathbf{#1}} \def\R{\mathbb{R}} \]

Predikce průměrné hrubé mzdy

Graf ukazuje vývoj průměrné hrubé mzdy (PHM) v České republice v období od roku 2000 do roku 2008 (data byla stažena ze stránek Českého statistického úřadu), červená přímka je odhadnuta z dat metodou nejmenších čtverců. Některé hodnoty z grafu jsou také uvedeny v tabulce; časový údaj je ve formátu t = rok+(kvartál-1)/4, kde rok $\in\{2000,\ldots,2008\}$ a kvartál $\in\{1,2,3,4\}$. Data si stáhněte ze souboru mzdy.txt a nahrajte do Matlabu příkazem data = load(’mzdy.txt’,’-ascii’); (matice data tedy obsahuje časy a mzdy).

Období $t$ [rok] 2000.00 2000.25 2000.50 2000.75 $\ldots$ 2008.50 2008.75
Mzda $M$ [Kč] 11,941 13,227 12,963 14717 $\ldots$ 22,282 24,448

Cílem je přibližně předpovědět hodnotu PHM v časech, pro které není hodnota PHM známá. To uděláme tak, že nejprve nalezneme funkci, která co nejlépe odpovídá zadaným údajům o PHM, a tuto funkci pak použijeme pro odhad PHM v požadovaném čase. Z grafu je vidět, že závislost PHM na čase je téměř lineární. Tudíž budeme hledat lineární funkci \[ \hat{M}(t) = x_1 + x_2 t \] kde $\hat{M}(t)$ je odhad PHM v čase $t$ a $x_1,x_2\in\R$ jsou parametry. Náš naměřený vzorek označíme $\{(t_1,M_1),\ldots,(t_m,M_m)\}$ obsahuje $m$ dvojic (čas,PHM). Optimální parametry nalezneme z tohoto vzorku ve smyslu nejmenších čtverců, tj. tak, aby součet kvadrátů odchylek skutečné a odhadnuté mzdy byl v naměřených bodech minimální. To znamená, minimalizujeme funkci \[ \sum_{i=1}^m ( \hat{M}(t_i)-M_i )^2 \]

Úkoly:

  1. Implementujte matlabskou funkci x = fit_wages(t,M) kde t a M jsou sloupcové vektory (tj. matice s jedním sloupcem) délky $m$ s časy a mzdami, a x je (sloupcový) vektor délky 2 s parametry $(x_1,x_2)$. Soubor fit_wages.m s implementovanou funkcí odevzdáte do Brute.
  2. Implementujte matlabskou funkci M = kvartal2_2009(x), která pro parametry x odhadnuté funkcí fit_wagesspočítá odhad PHM ve druhém kvartálu roku 2009.
courses/b0b33opt/cviceni/hw/lsq1/mzda.txt · Last modified: 2020/10/12 23:33 by wernetom