Lectures and Tutorials

Lectures

L Date Lecturer Contents Materials
1 22.9. JK Introduction, course map, requirements. Linear regression (continuous dependent variable, simple linear regression, p-values). SAN_intro, SAN_regression, SAN_lecture_1_czech, SAN_lecture_1_english
2 29.9. JK Multivariate regression (overfitting, model shrinkage). see the previous slides, SAN_lecture_2_czech, SAN_lecture_2_english
3 6.10. JK Nonlinear regression (polynomial regression, splines, local regression). SAN_nlin_regression, SAN_lecture_3_czech, SAN_lecture_3_english
4 13.10. JK Nonlinear regression (polynomial regression, splines, local regression). see the previous slides, SAN_lecture_4
5 20.10. JK Discriminant analysis (categorical dependent variable, LDA, logistic regression). SAN_discriminant, SAN_lecture_5
6 27.10. JK Generalized linear models (GLMs). SAN_GLMs, SAN_lecture_7
7 3.11. JK Dimension reduction (PCA and kernel PCA). SAN_dimred, SAN_lecture_8
8 10.11. JK Dimension reduction (other non-linear methods). see the previous slides, SAN_lecture_9
9 17.11. National holiday no class
10 24.11. TP Robust statistics. lecture notes, slides, SAN_lecture_10
11 1.12. TP Anomaly detection. SAN_anomaly, SAN_lecture_11
12 8.12. ZM Empirical studies, their design and evaluation. Power analysis. SAN_emp_studies_power_analysis, SAN_lecture_12
13 15.12. JK Clustering (formalism, k-means, EM GMM, hierarchical). SAN_clustering, SAN_lecture_13
14 5.1. JK Clustering (spectral clustering). SAN_spect_clustering, SAN_lecture_14

Tutorials

T Date Teacher Contents Materials
1 22.9. JB, AA, JK Statistical testing, t-test, significance, power of the test. san_intro.zip, r_setup.zip, pres-1.pdf
2 29.9. JB, AA, JK Simple linear regression. san_lreg.zip, R cheat sheet, pres_2.pdf
3 6.10. JB, AA, JK Shrinked linear regression san_fs.zip, assignment1.zip, pres_3.pdf
4 13.10. JB, AA, JK Non-linear regression san_nonlinear.zip, pres_4.pdf
5 20.10. JB, AA, JK Discriminant analysis san_lda.zip, assignment2.zip, reading for assignment 2, pres_5.pdf
6 27.10. JB, AA, JK Generalized linear models san_glms.zip, assignment3.zip, pres_7.pdf
7 3.11. JB, AA, JK Mid-term test, the final assignment Final Assignment
8 10.11. JB, AA, JK Dimension reduction san_dimred.zip, assignment4.zip, pres_8.pdf, assig4_R_problem.pdf
9 17.11. National holiday, dean's day no class
10 24.11. TP Robust statistics instruction.pdf
11 1.12. TP Anomaly detection – assignment anomaly2.pdf anomaly-problems.zipNotebook in PlutoLink to Pluto
12 8.12. ZM Empirical study design, power analysis empirical_study, experiment_data_FINAL
13 15.12. JB, AA, JK Clustering san_clustering.zip, pres_13.pdf, pres_13.odp
14 5.1. JB, AA, JK The final assignment – team presentations

Lecture recordings

Extra Resources for the Curious

If you are interested and want to learn more, here are some extra resources beyond this course you can look at:

  1. Wasserstein, Ronald L., and Nicole A. Lazar. “The ASA statement on p-values: context, process, and purpose.” The American Statistician 70.2 (2016): 129-133. DOI: 10.1080/00031305.2016.1154108

If you have a suggestion on what to add, please let us know. :)

courses/b4m36san/content.txt · Last modified: 2025/10/14 12:42 by klema