B4M36SAN BE4M36SAN Seminar/Tutorial

Alikhan Anuarbekov

Ali

anuarali@fel.cvut.cz

• For those who was absent last week, the course webpage:

https://cw.fel.cvut.cz/wiki/courses/b4m36san

• If you want to have all R libraries ready for labs, download **r_setup.zip**

	Materials	
san_int	ro.zip, 🔤 ip, 📾 pres-1.pdf	

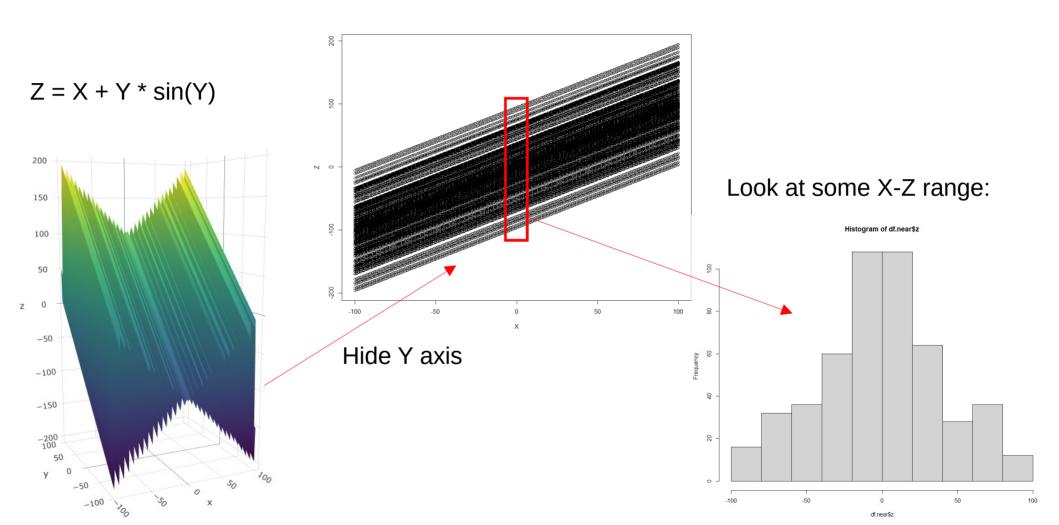
Big team project (Final assignment section in courseware)

- Start looking for 4 people team NOW
- Try to find a question/dataset that is interesting for you
- Look for previous year best projects for inspiration
- Ask question before the deadline for team creation (3.11)
- If no team on 3.11 (midterm week), then I will forcefully assign a team for you

Tips and recommendations:

- Do not focus on single question, try to combine two or more questions
 - Example: Not only look for medical question, but try to add socio-economy
- Try to find more than one dataset
 - Example: UNICEF + World Bank
- Start working early, at least to formulate a question

From deterministic formula to randomness (Last week)



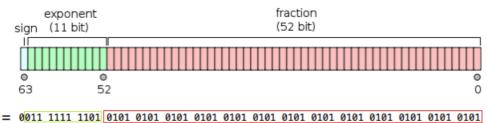
Sometimes deterministic formulas are infinitely complex

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$
 For small x, $\sin x \approx x$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$
 For small x, $\cos x \approx 1$

$$\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \dots$$
 For small x, $\tan x \approx x$

- You could compute every single digit
- But it has ∞ number of digits!
- If you cut it somewhere, you introduce an error!

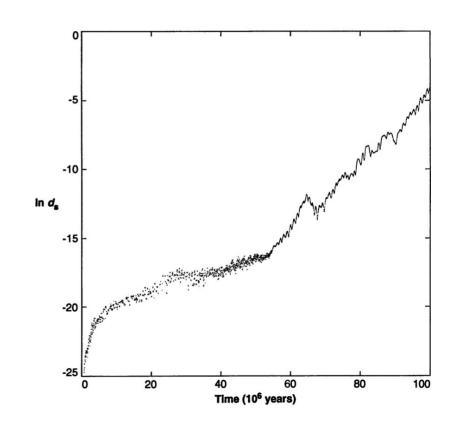


 $+\Delta_{error}$

Lagrange triangular solution (1:2:3) 0.6 0.4 0.2 -0.0 -0.4 -0.6 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8

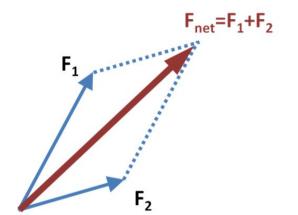
Practical case: Three body problem (Chaotic behavior)

$$\begin{cases} \ddot{\boldsymbol{r}}_{1} = \sum_{j=1, j \neq i}^{3} m_{j} \frac{\boldsymbol{r}_{j} - \boldsymbol{r}_{1}}{|\boldsymbol{r}_{j} - \boldsymbol{r}_{1}|^{3}} \\ \ddot{\boldsymbol{r}}_{2} = \sum_{j=1, j \neq 2}^{3} m_{j} \frac{\boldsymbol{r}_{j} - \boldsymbol{r}_{2}}{|\boldsymbol{r}_{j} - \boldsymbol{r}_{2}|^{3}} \\ \ddot{\boldsymbol{r}}_{3} = \sum_{j=1, j \neq 3}^{3} m_{j} \frac{\boldsymbol{r}_{j} - \boldsymbol{r}_{3}}{|\boldsymbol{r}_{j} - \boldsymbol{r}_{3}|^{3}} \end{cases}$$



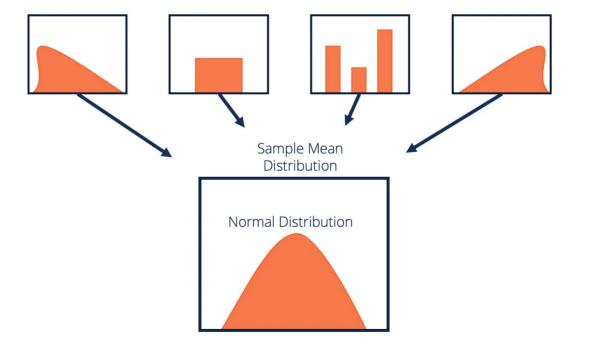
Why Gaussian normal distribution?

- Why we use a Gaussian normal? What if there is another distribution?
- Maybe, but typically when you have multiple factors/causes, they are typically summed



Example: Physics sum of multiple forces

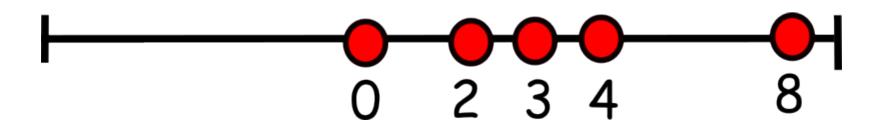
 Then, when we compute their mean (sum / number), it is mathematically Gaussian in a limit! (Central limit theorem)



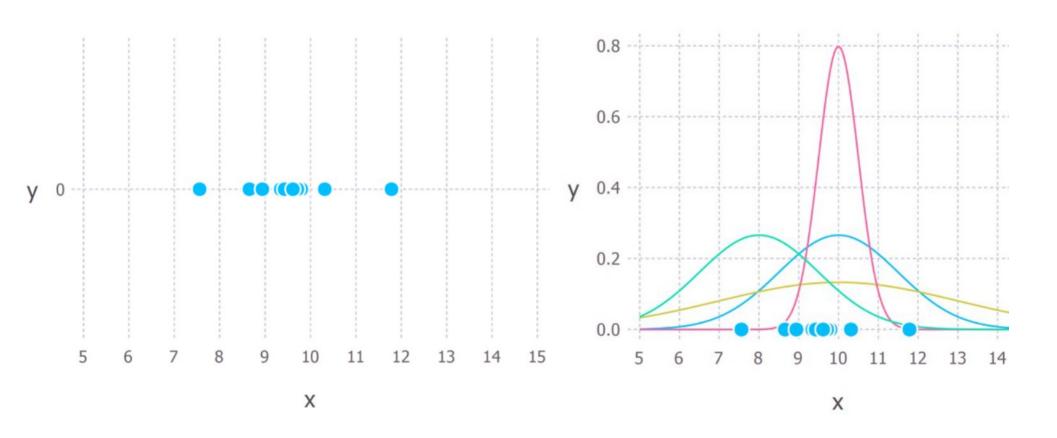
Consider the following problem:

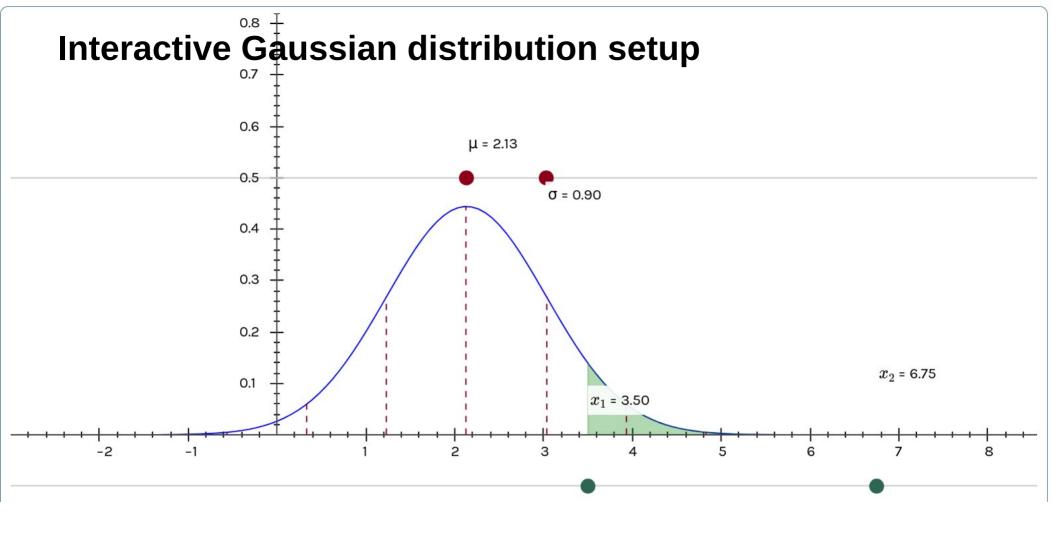
- We get a sample of points
- We know that they come from the Gaussian Normal distribution
- But how do we estimate the parameters?

$$f(x) = rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$



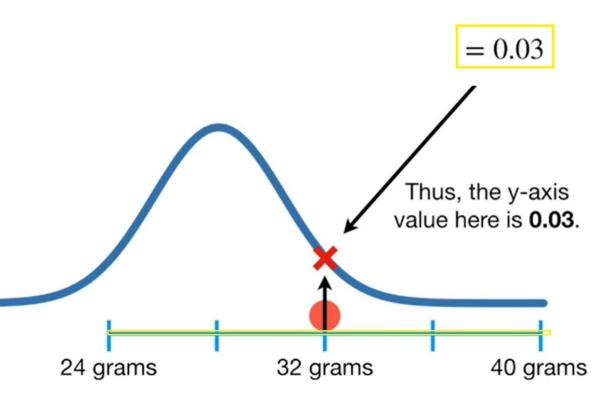
What value to use to measure how good each distribution is?





https://www.intmath.com/counting-probability/normal-distribution-graph-interactive.php

Maximum Likelihood estimation (MLE)



$$f(x) = rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$

- For every point compute its probability based on density formula
- Multiply all point values to get the total value

$$score(\mu, \sigma) = \prod_{i} f(x_i | \mu, \sigma)$$

See full explanation:

https://didawiki.cli.di.unipi.it/lib/exe/fetch.php/dm/ 19_dm2_maximum_likelihood_estimation_2022_23.pdf minimize score (μ, σ) for μ, σ

score
$$(\mu, \sigma) = \prod_{i} f(x_i | \mu, \sigma)$$

 $x_1, x_2, ..., x_m$

$$f(x) = rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$

Can anybody solve this analytically?

minimize score
$$(\mu, \sigma)$$
 for μ, σ

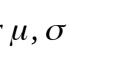
minimize score
$$(\mu, \sigma)$$
 for μ, σ
score $(\mu, \sigma) = \prod_{i} f(x_i | \mu, \sigma)$

$$r \mu, \sigma$$

or
$$\mu$$
 , σ

score
$$(\mu, \sigma)$$
 for μ, σ

or
$$\mu$$
 , σ



$$f(x) = \frac{1}{x^2}$$

 $\mu = \frac{1}{m} \sum_{i} x_{i}$

 $\sigma = \sqrt{\frac{1}{m}(x_i - \mu)^2}$

$$f(x) = rac{1}{\sigma \sqrt{2\pi}} e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$

 $\log f(x) = -\log \sigma - \log \sqrt{2\pi} - \frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2$

- Rewrite as:

 - $\log score(\mu, \sigma) = \sum_{i} \log f(x_{i}|\mu, \sigma) = \sum_{i} -\log \sigma \log \sqrt{2\pi} \frac{1}{2} \left(\frac{x \mu}{\sigma}\right)^{2}$

Solve with first derivative conditions:

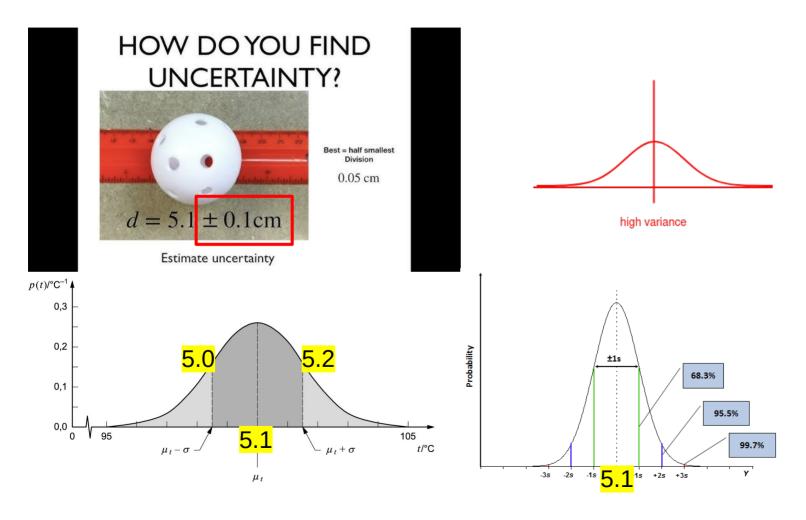
 $\frac{\partial}{\partial u} \log score(\mu, \sigma) = 0$

 $\frac{\partial}{\partial \sigma} \log score(\mu, \sigma) = 0$

 $X_1, X_2, ..., X_m$

OR we can use something more familiar...

Variance is the quality of distribution for continuous variable



Minimum variance estimation

$$S = \sqrt{\frac{1}{m}(x_i - \mu)^2}$$
 OR $S^2 = \frac{1}{m}(x_i - \mu)^2$

minimize
$$S(\mu)$$
 for μ
 $X_1, X_2, ..., X_m$

Can anybody solve this analytically?

Minimum variance estimation

$$S = \sqrt{\frac{1}{m}(x_i - \mu)^2}$$
 OR $S^2 = \frac{1}{m}(x_i - \mu)^2$

minimize
$$S(\mu)$$
 for μ
 x_1, x_2, \dots, x_m

$$\frac{\partial}{\partial \mu} S^2 = \frac{1}{m} \sum_{i} 2(x_i - \mu)(-1) = 0$$

$$\sum_{i} (\mu - x_i) = 0$$

$$m\mu - \sum_{i} x_i = 0$$

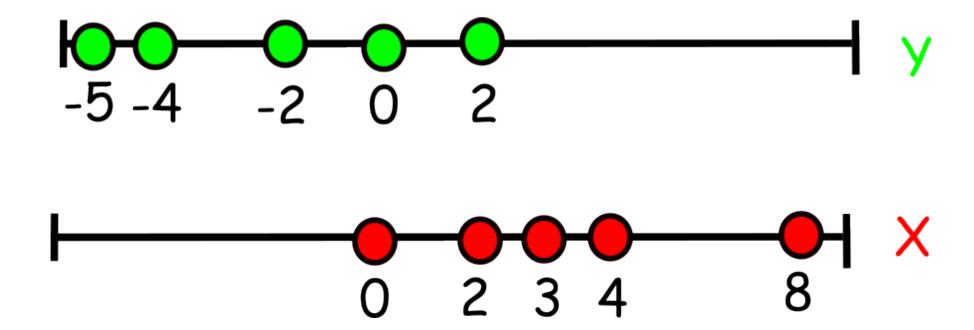
$$\mu = \frac{1}{m} \sum_{i} x_i$$

Same as in MLE! But only for Gaussian Normal! For now we will use this formula because of simplicity

Now we switch to multi-variable (multivariate) case

Consider the new problem:

- We get a sample of points for two variables
- We know that they both come from the Gaussian Normal distribution
- If they are independent, just solve every 1D problem as previously
- But what if we have a condition that they come from the same distribution?



Could you formulate the 2-variate optimization problem?

Could you formulate the 2-variate optimization problem?

$$S_X^2 = (x_i - \mu)^2$$
 and $S_Y^2 = (y_i - \mu)^2$

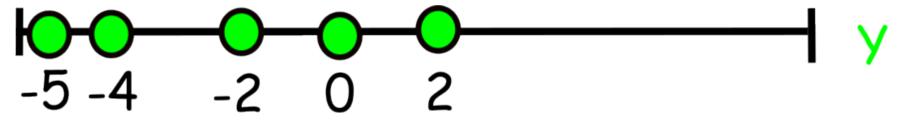
minimize
$$S_{total}^{2}(\mu) = S_{X}^{2}(\mu+5) + S_{Y}^{2}(\mu)$$
 for μ
 $x_{1}, x_{2}, ..., x_{m}, y_{1}, ..., y_{n}$

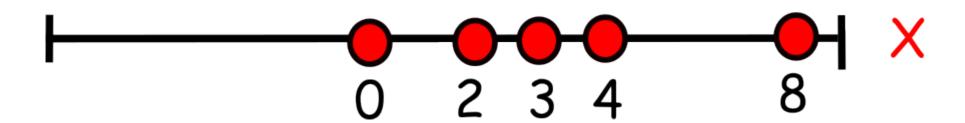
$$\frac{\partial}{\partial \mu} S^2 = \sum_{i} 2(x_i - \mu)(-1) + \sum_{i} 2(y_i - \mu)(-1) = 0$$

• • • • •

Consider a little modified new problem:

- We get a sample of points for two variables
- We know that they both come from the Gaussian Normal distribution
- If they are independent, just solve every 1D problem as previously
- But what if we have a condition that:
 - Both share the same variance
 - But X has its mean shift by exactly 5 units





Could you formulate the 2-variate optimization problem?

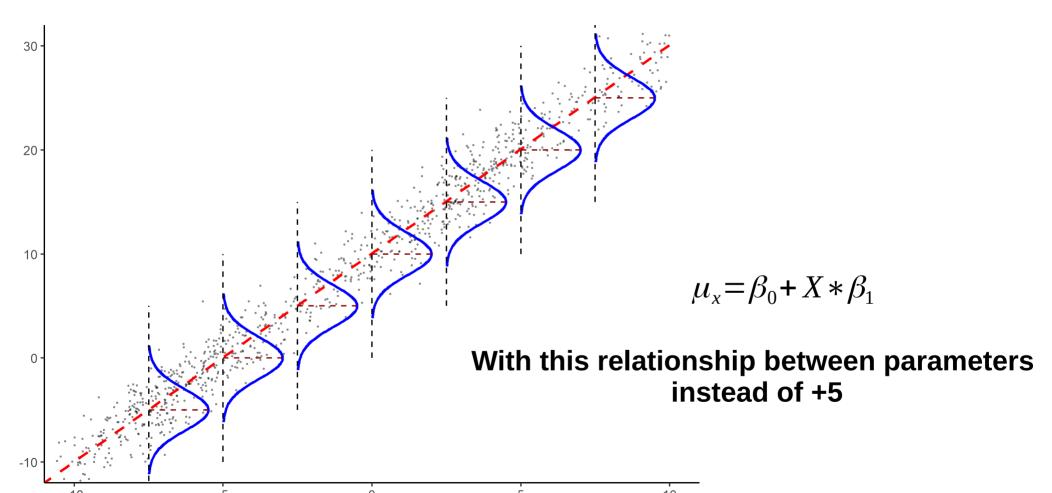
$$S_X^2 = (x_i - \mu)^2$$
 and $S_Y^2 = (y_i - \mu)^2$

minimize
$$S_{total}^{2}(\mu) = S_{X}^{2}(\mu+5) + S_{Y}^{2}(\mu)$$
 for μ
 $X_{1}, X_{2}, ..., X_{m}, y_{1}, ..., y_{n}$

$$\frac{\partial}{\partial \mu} S^2 = \sum_{i} 2(x_i - \mu - 5)(-1) + \sum_{i} 2(y_i - \mu)(-1) = 0$$

• • • • •

Finally, the linear regression is just a set of such tasks



And this is simply Minimum Variance objective

• we define the residual sum of squares (RSS) as

$$RSS = e_1^2 + e_2^2 + \dots + e_m^2 = \sum_{i=1}^m (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

• the least squares approach chooses $\hat{\beta}_0$ and β_1 to minimize the RSS

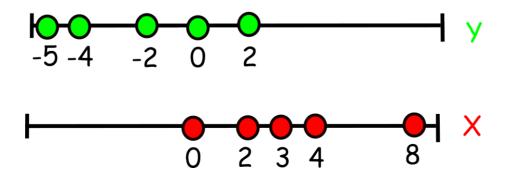
$$\frac{\partial RSS}{\partial \hat{\beta}_{1}} = 0 \rightarrow \hat{\beta}_{1} = \frac{\sum_{i=1}^{m} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{m} (x_{i} - \bar{x})^{2}}$$

$$\frac{\partial RSS}{\partial \hat{\beta}_{0}} = 0 \rightarrow \hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x}$$
Same derivative computation

What is the p-value of the coefficient?

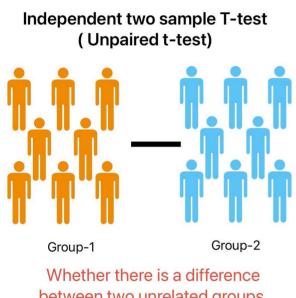
Lets recall how we defined a problem for 2 distributions:

- We get a sample of points for two variables
- We know that they both come from the Gaussian Normal distribution
- If they are independent, just solve every 1D problem as previously
- But what if we have a condition that:
 - Both share the same variance
 - But X has its mean shift by exactly 5 units
- But what if the measured variable (whether X or Y) has no impact on the distribution? Is there a formal (hypothesis testing) way to compute a p-value to decide?

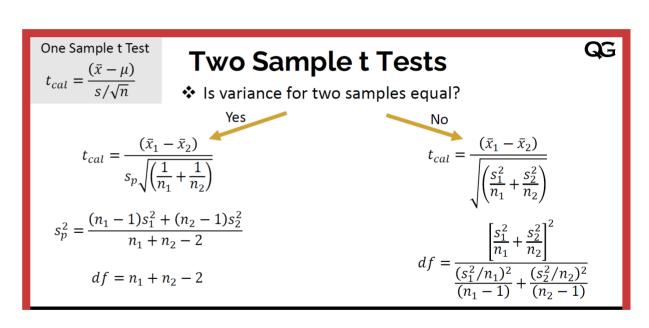


What is the p-value of the coefficient?

This is the same case as two sample t-test from statistics 101!



between two unrelated groups.



See: https://www.qualitygurus.com/two-sample-t-test/

See: https://pub.aimind.so/t-test-essentials-understanding-one-sample-independent-twosample-and-paired-test-methodologies-5dbbecd319b5

What is the p-value of the coefficient?

- The most common hypothesis test
 - $-H_0$: there is no relationship between X and Y,
 - $-H_A$: there is some relationship between X and Y,
- mathematically this corresponds to testing
 - $-H_0: \beta_1 = 0 \text{ versus } H_A: \beta_1 \neq 0,$
- the test stems from the standard error and t-statistic given by

$$t = \frac{\hat{\beta}_1 - 0}{SE(\hat{\beta}_1)}$$

- the statistic will have a t-distribution with m-2 degrees of freedom,
- the corresponding p-value is the probability of observing any value equal to |t| or larger,
- both under the H_0 assumption, i.e., assuming $\beta_1 = 0$.

What is R^2 (R-squared)?

- This is another way to measure how good we are in comparison to X-Y independent (baseline) model (beta1 = 0)
- But unlike previous p-value, this is based on metric value
- Recall the optimization problem for Variance minimization:

$$S_{x=1}^2 = \sum_i (y_{1i} - \mu)^2$$
 and $S_{x=2}^2 = \sum_i (y_{2i} - \mu_{x=2})^2$

minimize
$$S_{total}^{2}(\mu) = S_{X=1}^{2}(\mu_{x=1}) + S_{X=2}^{2}(\mu_{x=2})$$
 for $\mu_{x} = \beta_{0} + \beta_{1} X$
 $x = 1 \rightarrow y_{11}, y_{12}, ...$
 $x = 2 \rightarrow y_{21}, y_{22}, ...$

What is R^2 (R-squared)?

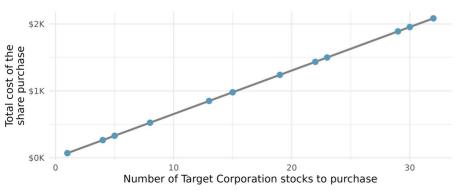
- This is another way to measure how good we are in comparison to X-Y independent (baseline) model (beta1 = 0)
- But unlike previous p-value, this is based on metric value
- We start with baseline model (beta1 = 0), it has a certain value of

$$S_{total}^2(\beta_0,\beta_1=0)$$

We want to improve it for our derivative-based solution:

$$S_{total}^{2}(\beta_{0},\hat{\beta}_{1})$$

And finally, if we were to ideally solve the problem:



$$S_{total}^{2}(perfect) = 0$$

What is R^2 (R-squared)?

- This is another way to measure how good we are in comparison to X-Y independent (baseline) model (beta1 = 0)
- RSS = our variance
- TSS = variance of baseline model
- Decrease of minimization value in percentage

R-squared gives the fraction of variance explained by the model

$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

- where $TSS = \sum_{i=1}^{m} (y_i \bar{y})^2$ stands for the total sum of squares,
- and $RSS = \sum_{i=1}^{m} (y_i \hat{y}_i)^2$ stands for the residual sum of squares,

What is F-statistics and how to evaluate a total model?

- It is R-squared converted to hypothesis format with p-value
- Simply speaking if p-value < 0.05, you model is useful
- What would you say about the following model?

```
Residual standard error: 1.236 on 9 degrees of freedom Multiple R-squared: 0.6667, Adjusted R-squared: 0.6297 > 0.5 is GOOD F-statistic: 18 on 1 and 9 DF, p-value: 0.002165 < 0.05, GOOD
```


Rstudio/R basic programming

```
LOGICAL -> INTEGER -> NUMERIC -> CHARACTER
```

"boolean" "integer" "double" "string"

a = 1
class(a) = type of variable
vector = array of same type

https://www.w3schools.com/r/r_get_started.asp

https://www.datacamp.com/courses/free-introduction-to-r

Download today's tutorial script:

2

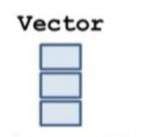
. . . .

29.9.

JB, AA, JK

Simple linear regression.

san_lreg.zip, 📾 pres_2.pdf



- 1 column or row of data
- 1 type (numeric or text)

List

- 1 column or row of data
- 1 or more types

Matrix

- multiple columns and/or rows of data
- 1 type (numeric or text)

Data Frame

- multiple columns and/or rows of data
- multiple types

^	dma =	day	amount_of_deaths	new_deaths =	weekly_deaths =	gtrends
66	1	2021-05-02	66247	47	491	62
67	1	2021-05-09	66690	41	443	62
68	1	2021-05-16	67030	43	340	55
7481	2	2020-02-02	0	0	0	68
7482	2	2020-02-09	0	0	0	66
7483	2	2020-02-16	0	0	0	68
7484	2	2020-02-23	0	0	0	65
7485	2	2020-03-01	0	0	0	66
7486	2	2020-03-08	0	0	0	66
7487	2	2020-03-15	1	0	1	68
7488	2	2020-03-22	12	3	11	77
7489	2	2020-03-29	56	6	44	79
7490	2	2020-04-05	184	16	128	100
7491	2	2020-04-12	397	38	213	96
7492	2	2020-04-19	777	25	380	77
7493	2	2020-04-26	1170	21	393	77
7494	2	2020-05-03	1559	20	389	73
7495	2	2020-05-10	1945	21	386	69

<---- View(myDataFrame)

myDataFrame\$new_deaths = access column as vector

Showing 66 to 84 of 14,212 entries, 6 total columns

$$H = \beta_0 + \beta_1 \cdot V + \beta_2 \cdot K + \epsilon, \qquad \epsilon \in \mathbb{N}(0, \sigma^2)$$

can be denoted shortly as (R notation): $H \sim V + K$

$$lm.fit <- lm(medv \sim lstat, data = Boston)$$

Also a useful notation: $\mathbf{H} \sim \mathbf{I}$ (H = regression of all other variables)

If you are not sure about something about function/data:

Today's homework (voluntary) for 1 point

2 29.9. JB, AA, Simple linear regression. JK

Deadline: 06.10.2025 (next seminar)

Goals:

- *) Try to write some simple R code
- *) Understand basic concepts regarding the linear regression
- *) You could still answer with pseudocode and theoretical answers if you do not want to use R