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A little more details for Midterm test



3 Nonlinear Regression (3p.)

Write the definition of polynomial regression relation for a single independent variable. Explain its advantages
and disadvantages. Describe how you would determine the optimal degree of the model. Could this model
encounter the problem of multicollinearity, and why? Can we use more than one independent variable in this
model? Can polynomial regression be applied to classification tasks?

_ 2 3 P
Formula: Y =Dotfr X+0, X" +p- X'+ +p- X +¢,
eeN(0,0%)
Advantages: + You could represent any continuous non-linear shape with large enough degree

Disadvantages: - If shape is too complex, you will 100% get an over-fit (6 or larger degree)
- If shape is discontinuous, you will hardly model it with a simple polynomial

How to find an optimal degree? Recap previous seminar beginning:



An approach to select an optimal degree of the polynomial

4.2.3) Finding out what is the optimal model among possibilities:

Option B:
find REASONABLE models and test them in a for loop via some criterion (AIC, BIC, CrossValidation, R"2)

Given that you compute number of smooth optimal/inflex points and not-so-smooth points,

Try all of previous model types: linear, step, polynomial, spline, ....

But with degree and knots adjusted according to smooth/optimal/inflex and not-so-smooth points

For example:
Try one single polynomial with degree = smooth optima/inflex points

Divide smooth points to intervals of 2-3, e.g. for lets say 12 smooth points use 4 polynomials of degree 3



Multicollinearity makes coefficient unstable --> transform to orthogonal polynom
(Just mention, not formula!)

X=X 1 1 12 13 But they are correlated!
2 May cause some problem,since:
X,=X 2|52 22 2
X= . correlation = broken assumption of LM

Xp,=X" 100/ 1100 100°> 100°
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Even though they are changed = changed coefficients,

but their predictions are the same!

predict(Im with x coefs) = predict(Im with x_ortog coefs)




More than one variable in polynomial regression:
directly (+ possible interaction terms):

Y=B+B X+ B X1+ By Xo+ By Xo+ .+ o X+ e,

eeN(0,0°)
GAMs (+ possible interaction terms):
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Jilyear)

Use of polynomial regression in classification:

Just use logistic regression + GAM:

logitY:/30+/3’1-X1+/3’2-Xf+/33-X2+/34-X§+...+/3P-X§+ €,

Y =
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3 Nonlinear Regression (2p-.) 3p

Splines typically work with knots. First, explain what a knot is and why introducing knots can be advantageous.
Then, explain how knots can be set /computed /estimated. Finally, name three approaches to nonlinear regression
that do not use knots. When would you apply these methods in practice (consider them all as together first
and then individually)?

Knot: A point that separates two intervals with different polynomial models. Typically knots are required to follow
continuity from one model curve to another.

Knots are needed to overcome over-fit issues — instead of large, lets say 12" degree polynomial, we will fit
4 polynomials of 3th degree
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We can choose the position of knots if number of them is given:

quantiles =
such that each interval between knots has the same number of points

> optimality control via Cross-Validation
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A bit problematic and ambiguous question, so | did not penalized it hardly

Nonlinear regression models:

WITH KNOTS: Piece-wise polynomial, Spline, Step function,
Smoothing spline (knots in every points, but | would have taken it as well as correct answer)

WITHOUT KNOTS: single Polynomial, local regression,
~ GAMs/GLMs also count

Additional tip:
* Try not to answer with long text, | could read it and give you points for Midterm, but on Final exam you
should be answering with formulas and short statements only!
* Maybe only this question about methods without knots could be accepted in this text-discussion form
* This is a math course, you should answer formally and exactly

 DEFINITION = short, formula + description of elements
« EXAMPLES = short, only numbers/particular formula, not text



Final Assignment, few comments

 Today (17.11.2024) is the deadline for proposal = few sentences about what you
are planning to do for Final assignment

* Next week (24.11.2024) is the deadline for Work Plan = detailed description of
the task you are going to solve

* In two weeks (01.12.2024) is the deadline for consultation possibility

* The deadlines are soft till 01.12.2024, you could submit it later than deadlines,
but if you do not submit anything till 01.12.2024, you will get huge penalties

* You do not have to participate in personal consultations, | will send you the
comments and feedback after you submit the proposal/work plan in BRUTE

* If you are doing Cybersecurity, everything (grading, format, etc.) is done by
Tomas Pevny, only final presentation would be with everybody else



Dimensional Reduction



If we have many X variables, we can’t even visualize them in dimension larger than 3D (4D = color trick)

In practice, | can observe
10D space pretty easily:
(+ 1D for each property of an object)
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But what if we have more than 2 X variables? We can’t even visualize them in dimension larger than 3D

D
Fisher’s discriminant plot

If we assume that all classes have same LDA:
Zl = Zz (Linear dimension reduction, HW 2)

Then we can take every pair and visualize their decision boundary:
Eigenvector/ Eigenvalue (linear algebra)

3D-vector (2,3,4)

One-versus-all Discriminant Axes for 4 classes in 3d

Z-axis
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If we project along 1-2 largest eigenvectors,

For every pair, take their mean centers  in D dimensional space
Then we can get a clean projection in 2D/3D

and connect with a vector



Alternatively, PCA = Principle Component Analysis

Remember Gaussian covariance(normalized correlation) matrix rotation?

e 1 A4 Multivariate Gaussian (Normal) examples
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Alternatively, PCA = Principle Component Analysis

| estimate: cov(X) = XAT * X and perform an eigendecomposition (diagonalization via eigenvectors)
> Warning! All points should be centered around their density/variance center

o 1 4 > cv.mat <- matrix(c(1, 0.4, 0.4, 1), 2, 2)
; G O | - s e
p(y[E) t\p( 2y = y) > 2 1 ] > elgen(cv.mat)
. —0. 707 0.707 :igin(} decomposition
values
0. 707 ) 1.4 [1] 1.4 0.6
2t O 6 0.707
Svectors
1r [’1] [:2]
[1,] ©.7671068 -0.7071068
it [2,] ©.7071068 0.7071068

Eigen-decomposition tutorials:

-3 : : : : : ] https://www.youtube.com/watch?v=PFDu9oVAE-g
https://www.youtube.com/watch?v=KTKAp9Q3yWg

https://math.fel.cvut.cz/en/people/velebil/files/lag 2023 podzim/lag_handoutO8a.pdf



Alternatively, PCA = Principle Component Analysis

Use only K largest eigenvalues = largest variance axes, where K is a needed reduced dimension(typically K = 2)

1 4
p(yIZ) o exp (—3y"5ly) %= l & 3 ]

Take K =1 and
project onto it

> On the Final exam you may get a question of PCA computation! This is a short description of its principle



Alternatively, PCA = Principle Component Analysis

Of course, the data does not have to be from Gaussian distribution to be reduced by PCA

> Mean and Covariance Matrix could be computed for any data with same formula as with Gaussian from LDA




PCA LDA

max scatter between
max scatter AND

of the entire data set min scatter within classes
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Non-linear Dimension Reduction: [
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Non-linear intuition = straight line is not the shortest distance between points

> For example: Physical laws of matter prevents us from going through earth
(you can’t simply pierce through land and water)

Surface is non-linear = shortest path is a parabola



Non-linear Dimension Reduction:
Manifold: same principle

3D

> PCA/LDA cannot find this!
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¢( X ) =cannot compute, some complicated formula

¢(X)" ¢(Y)=metric =distance in complicated space

K (X,Y)=¢(X)" ¢(Y)=itis enough to compute distance for each pair

cov=X" X - cov g=formula that only uses pairwise-distances K 1
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0.0

X2

—0.51

—1.0

> On Final exam you may get a question:
Please show the exact computation of this Kernel PCA trick!
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Multidimensional scaling (MDS)

= [he main idea
points close together in A" should be mapped close together in T,

= minimizes the

m j? 2
stress(T, f) = \/Z” 1((0y) — diy)

m 2
.r,l Jj

0;j = dx(Xi,X;j), dij = dr(ts, t;) — typically Euclidean,
f is a proximity transformation function (e.g., identity, monotonic — metric, ordinal),

s whole class of methods that differ in

the method for calculation of proximities &,
the parametrization of stress function,

the method that minimizes the stress function (e.g., gradient descent, Newton).

https://www.youtube.com/watch?v=NEaUSP4YerM



Assignment 4: Isomap implementation

Introduction

v

The goal of this tutorial is to get familiar with some basic methods fo/[,,,,d’i'/fhensionality
reduction, complete you own implementation of the Isomap alg/prﬁfhm (in cooperation with
Multidimensional scaling), experiment with its parameters a{)d”t/ompare with other
techniques of dimensionality reduction (PCA, t-SNE).

> You get high-dimensional vectors of word;aﬁd 10 categories of these words
(for example: mood/emotion words, asking/question-related prepositions etc.)

> You will have to show that thegew’(/ﬁrds are clustered together by this logic

> You can check if your sg/lut”iyan IS correct by comparing it to ground-truth result:
(graph_iso.pdf)



Some R technical issue in assighment 4:

> If you have a wrong version of deldir library, you may get an error:

Error in evallccc) : object 'voronoi' not found

> You can solve it by changing (<<- is double <, global variable):
voronoi <- deldir(X[,1], X[,2])
to

voronoi <<- deldir(X[,1], X[,2])



Word2vec data representation Word2vec
> ChatGPT for example uses this
> Each word is a vector/point
in 256/1024 dimensional space
> The idea is that logic in language
is observed in geometrical logic
> The task is to visualize this logic similar to below:
oman
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K Nearest Neighbors in Isomap

Use KNN to generate a local plane of neighbors

It uses the manifold’s local linearity/local euclidean geometry
A

y Class A : Inliers

. . -# Threshold - Class B : Outliers

£ \

! \
]
. @
\ I

\ 1

\ - / .

\ # k=4 . ’ Find shortest path around such local planes,
s e . That way we can “unroll” it

. S~ o . gt ® and generate such 2d representation




2. Implement ISO-MAP dimensionality reduction procedure.

» Use k-NN method to construct the neighborhood graph (sparse matrix).

o For simplicity, you can use get.knn method available in FNN package.

« Compute shortest-paths (geodesic) matrix using your favourite algorithm.

o Tip: Floyd-Warshall algorithm can be implemented easily here.

» Project the geodesic distance matrix into 2D space with (Classical) Multidimensional Scaling (cmdscale

functions in R).

« Challenge: you may simply use PCA to do the same, but be careful to account for a proper normalization
(centering) of the geodesic (kernel) matrix (see Kernel PCA for details).

Compute geodesic
distances

—>

Praject cut in high
dim. space

™ f’;;,“ ) W

MDS
on geodesic
distances

MDS
in high dim. space




Bonus homework: dimred_artifical + dimred breast cancer

9 18.11. JB, AA, Dimension reduction | emsan dimred.zip, |
JK em assignment4.zip

> Fill some gaps in code
> | will give you a 0.5 points for every file (0.5 for artificial, 0.5 for breast cancer)

# Now plot the first two columns

plot(___,
col=rainbow(nrow(plane)),
ylab = "PC2")

# Use the eigen() and
transform_mat <- ___

my X <- # Tre






	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

