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Introduction

Robust statistics refers to methods designed to provide reliable results even when some assumptions
about the data are violated, such as (i) the presence of outliers and / or (ii) wrong assumption on
type of distribution.1 Robust statistics is therefore particularly useful in analysing real-world data,
which next to never meet the assumptions of traditional statistical methods. They are essential for
reliable data analysis. The text below is a summary of methods for robust estimation of location,
scale, linear regression, correlation, and statistical tests.

How to measure quality of statistical methods

When deciding on which statistical method to use, we need to understand their differences and
be able to quantify them. In robust statistics, we are interested in two properties: robustness and
efficiency.

Robustness

Robustness refers to the ability of a statistical method to provide consistent results even when the
data are corrupted by the presence of outliers. The measures includes breakdown point, influence
function, which summarised in gross error sensitivity.

Breakdown Point: is equal to the smallest fraction of data points that can be replaced with outliers
before the estimator gives an arbitrarily large result. A higher breakdown point indicates a
more robust method. For example, the median has a breakdown point of 50%, meaning it
can handle up to 50% of the data being outliers without giving an extreme result.

Influence Function: measures sensitivity of an estimator to small changes in the data at a given
point. If the influence function is bounded, then the estimator is robust and it would not be
affected by small perturbations or outliers. Influence function is defined as

IF(x|p, η) = lim
ϵ→0

η((1− ϵ)p+ ϵδx)− η(p)

ϵ
,

where p is the assumed probability density function of data, η is the estimator, and x is a
point in which the influence function is evaluated.

Gross error sensitivity: is a maximum over the influence function over the support of the mea-
suresments. It summarizes influence function into a single number. If smaller than infinity,
the the estimator is robust to some degree.

GES(p, η) = sup
x

|IF(x)|

Efficiency

Efficiency of the method relates variance of the estimate with the number of data points.2 The
robust methods typically sacrifices efficiency for the robustness. If one method is less efficient than
the other, then it requires more data points to achieve same variance of the estimate.

1Usually most people assume normal distribution, many times without knowing it.
2The estimate is random variable, because it is a function of random variables (the data points are realizations
of these random variables). The distribution of the estimate depends on the type of the estimator and the
distribution function of observed random variables (data points).

2



When judging the efficiency, it usually related to some well known well established estimator
(mean for location, variance for spread) on data points following some known distributions (Normal
distribution). The most common measure is Asymptotic Relative Efficiency (ARE), which is
computed as a fraction of variances of two estimators η̂1, η̂2, with number of data-points going to
infinity. ARE helps you to estimate, how many more data points do you need to get an estimate
of the same quality (variance). ARE is defined as

ARE(η̂1, η̂2, p) =
V2

V1
,

where V1
n , V2

n are variances of estimators η̂1, η̂2 of a parameter µ of probability distribution p.
Be aware though that computing variances of estimates is generally difficult and might not be
analytical.

Estimators of location

Mean: Mean is optimal if the data are sampled from the normal distribution, but it has zero break
point. This means that even one outlier can render the estimate useless. While extremely
popular, it should be used with caution, as there robust alternatives with only slightly worse
efficiency.

For n data points {xi}ni=1, mean is computed as 1
n

∑
i xi.

Median: The median is the middle value of a set of sorted points (in case of the cardinality of
set is even, it is the average of two closest to the middle.) The median is optimal estimator
of location of Laplace distribution. It is extremely robust with 50% breaking point, but it
is relatively innefficient, since its asymptotic relative efficiency (ARE) with respect to the
normal distribution is 0.637.

For n data points {xi}ni=1, median is the solution of the following optimization problem

med ({xi}ni=1) = argmin
t

∣∣∣∣∣∑
i

I(xi ≥ t)−
∑
i

I(xi ≤ t)

∣∣∣∣∣ ,
where I(·) is an indicator function being one if its argument is true and zero otherwise.

Trimmed Mean: Computes mean from a set of measurements, where q% highest and q% lowest
values are removed. The rationale behind is that errors in measurements have highest influ-
ence when they have extreme values. By removing tails, these extreme values are removed.
It is very likely that removing tails remove some normal samples as well, which decreases the
efficiency of the estimator. The breakdown point is controlled by q and it is equal to q. The
ARE with respect to the normal distribution and for q = 10% is 0.943.

Winsorized Mean: Computes mean from a set of measurements, where q% highest and lowest
values are replaced by closest valid values. The method is based derived from M-estimators
explained below, where the rationale becomes clear. Winsorized mean can be useful for
datasets with skewed distributions. The breakdown point is controlled by q and it is equal
to q.

Hodges-Lehman: For n data points {xi}ni=1, the Hodges-Lehmann estimator is calculated by:

1. Forming all possible pairs {(xi, xj)}n,ii=2,j=1.

2. Calculating the average of each pair.

3. Taking the median of these averages.
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The formula is therefore med
({

1
2(xi − xj)

}n,i

i=2,j=1

)
. It is very robust with 0.29 breakdown

and very efficient with ARE = 0.955 against Normal distribution. While not very widely
known, it is an excellent choice.

Estimators of scale

Sample standard deviation (STD) is the most common method to estimate scale. For n data
points {xi}ni=1, the unbiassed version is computed as

σ2 =
1

n− 1

n∑
i=1

(xi − x̄)2

and the biassed formula version as

σ2 =
1

n

n∑
i=1

(xi − x̄)2

The biassed version is sometimes preferred, as it has lower variance. The method is fragile,
as the breakdown point is 0, but it is optimal for Normal distribution.

IQR One of the most common measures is the Interquartile Range (IQR), which is the difference
between the 75th and 25th percentiles of the data. IQR is robust, but it is not very efficient.
The IQR is only indirectly related to variance. To obtain estimate of the variance, it has to
be divided by 2

√
2erf−1(12) ≈ 1.349. The breakdown point is 25%.

Median absolute deviation (MAD) estimates the scale of the data by taking the median of the
absolute differences between each data point and the median of the data. It is robust and
efficient, with a breakdown point of 50%. ARE of MAD with respect to the the sample
standard deviation is 37%. For n data points {xi}ni=1, MAD is computed as

MAD = med{|xi −med{xi}|}.

Sn Robust and efficient estimator of scale was proposed in [3]. For n data points {xi}ni=1, the
formula is

Sn = medi{medj |xi − xj |}.
To use it to estimate standard deviation of normal distribution, the value has to be multiplied
by 1.1926, i.e. σ̂ = 1.1926 ·Sn. The method is robust with breakdown point 29% and efficient
with ARE to normal distribution being 0.86.

Qn The second estimator of scale proposed in [3] uses formula

Qn = {|xi − xj ||i < j}q25 .

To use it to estimate standard deviation of normal distribution, the value has to be multiplied
by 1.0483. This method is more robust than Sn with breakdown point 50%, but it is slightly
less efficient with ARE to normal distribution being 0.82.
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M-estimators

Normal distribution — mean

Why mean is so popular? It turns out that that mean is an optimal (minimum variance and
unbiassed) estimator for the normal distribution. This is because it is solution to maximum
likelihood estimator. Assuming n data points {xi}ni=1, the derivation is as follows. The estimate
of µ is the point at which the likelihood function for data points attains maximum, i.e.

argmax
µ

L =

n∏
i=1

1√
2πσ

e−
1

2σ2 (xi−µ)2 .

To remove the product, we can find the maximum of the logarithm of L instead. Optimizing
the logarithm does not change the solution, since the argument is positive and the logarithm is a
monotonous function. With that the optimization problem simplifies to

argmax
µ

logL = − 1

2σ2

n∑
i=1

(xi − µ)2 − log
√
2πσ

To find an extrema, we take the derivative with respect to µ, set it to zero, and after algebric
simplification, we obtain a formula for mean

µ =
1

n

n∑
i=1

xi.

Laplace distribution — median

Let’s now assume the data points to be drawn from Laplace distribution, i.e xi ∼ Laplace(µ, σ)

with probability density function p(x|µ, σ) = 1
2σe

− 1
σ
|x−µ|. Following the same steps as above, we

start by formulating the likelihood function as

argmax
µ

L =
∏
i

1

2σ
e−

1
σ
|xi−µ|.

Again, we maximise its logarithm

argmax
µ

logL = − 1

σ

∑
i

|xi − µ| − log 2σ.

We derive the estimator by setting the gradient to zero and do little bit of algebraic manipulations.

0 =
∑
i

sgn(xi − µ) =
∑
i

I[xi > µ]−
∑
i

I[xi < µ]

and we have obtained the median.

Generalization

Let’s now assume a family of exponential probability distributions with density functions defined

as 1
Z(σ)e

−ρ(x−µ
σ

). The properties of the distribution are determined by a function ρ, which can be

any function with the integral
∫∞
−∞ e−ρ( x

σ )dx = Z(σ) being finite, i.e. Z(σ) =< +∞. Z(σ) is called
a partition constant and normalizes the probability density function such that its integral over the
range is one. The distribution is parametrized by the location and scale parameters, as we usually
assume ρ to be symmetric.
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We can derive a maximum likelihood estimator by repeating the above steps for a general
function σ. The likelihood function is defined as

argmax
µ

L =
∏
i

1

Z(σ)
e−ρ(

xi−µ

σ
).

We take its logarithm

argmax
µ

logL = −
∑
i

ρ(
xi − µ

σ
)− log(σ),

compute gradient, and find point that is equal to zero.

0 =
∑
i

ρ′(
xi − µ

σ
).

Now realize, that the robustness robustness of the solution is determined by the properties of ρ′.
If ρ′(x) is bounded, then the solution is robust, and the other way around if ρ′(x) is unbounded,
the solution is not robust. In fact, there is a very close connection of ρ′(x) to the influence function
introduced above to charaterize robustnes of detectors. This property is used to design a family
of functions ρ, such that their maximum likelihood estimates yield a robust estimator of µ.
We list three most widely known functions.
Huber loss A (not called Huber) [2], defined as

ρ =

{
x2

2 |x| < a
a2

2 |x| ≥ a

with derivative

ρ′ =

{
x |x| < a

0 |x| ≥ a

which yields an estimator µ = 1
n<a

∑
i||xi|<a xi, which corresponds to trimming estimator of location

introduced above
Huber loss B (called Huber) [2], defined as

ρ =

{
x2

2 |x| < a

a|x| − a2

2 |x| ≥ a

with derivative

ρ′ =

{
x |x| < a

a · sgn(x) |x| ≥ a

which yields an estimator µ = 1
n

[∑
i|abs(xi)<a xi + n>a · a

]
, which corresponds to Windsorizing

estimator of location introdused above. Huber loss B is very popular in machine learning, because
it is convex and therefore leads to optimization problems with more stable convergence.
Hampel loss [1] defined as

ρ =


x2

2 0 ≤ x < a

ax− a2

2 a ≤ x < b
a(x−c)2

2(b−c) + 1
2a(b+ c− a) b ≤ x < c

1
2a(b+ c− a) c ≤ x
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Figure 1: Functions ρ used in M-estimators of location (left) together with their derivatives ρ′.

with derivative

ρ′ =


x 0 ≤ x < a

a a ≤ x < b
a(x−c)
b−c b ≤ x < c

0 c ≤ x

Hampel loss is complicated and rarely used in practice due to the large number of parameters.
The shape of its influence function was used during design of robust estimator of scale Sn and Qn.

Robust linear regression

The math behind M-estimators can be used to design robust linear regression. The standard
linear regression is based on the assumption that the residuals are normally distributed. The
robust alternative is to use M-estimators with a robust ρ function.

To derive the robust linear regression, we assume a linear model of dependant variable y on
independant variables x ∈ Rd subjected to aditive noise Pϵ i.e.

y = xTβ + ϵ, ϵ ∼ Pϵ

The standard linear regression is based on the assumption that the residuals are normally dis-
tributed, i.e. Pϵ = N (0, σ2). Assuming a set of data points {(xi, yi}ni=1, we can use maximum like-
lihood estimate method to estimate parameters as above to estimate parameters β of the model.
Therefore, the maximum likelihood estimate of β is the solution of the following optimization
problem

β̂ = argmin
β

∑
i

(xTi β − yi)
2.

Assuming different distribution of noise, e.g. Laplace ϵ ∼ Laplace(0, σ), following the same steps
we obtain recover median absolute regression

β̂ = argmin
β

∑
i

|xTi β − yi|.

Replacing the ρ function with Huber B function we recover least trimmed squares (LTS)

β̂ = argmin
β

∑
i

(xTi β − yi)
2
(q),
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Figure 2: An example of robust regression on a simple 1d problem y = 0.1x +N (0, 0.1). The left
figure is without outliers, the right figure is with outliers.
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Figure 3: Figures show samples drawn from normal distribution with diagonal covariance matrix
(i.e. xi and yi are independent). The left Figure shows samples without any outlier, for
which Pearson correlation coefficient is ρ = −0.0008 suggesting the data are independent.
The right figure shows (almost) the same samples with one outlier, for which Pearson
correlation coefficient is ρ = −0.3245 suggesting the data are dependent, which is wrong.

where ·(q) represents an order statistics (quantile).
An example of robust 1d regression is showin in Figure 2.

Robust estimate of correlation

Correlation in statistics referes to any type of relationship between two random variables. In
practice, the term ”correlation” almost always implies linear correlation measured by Pearson’s
correlation.
Let’s assume that we have two sets of data points {(xi, yi)}ni=1. The Pearson’s correlation is

defined as

ρX,Y =
1
n

∑
i[(xi − x̄)(yi − ȳ)]

σxσy
,

where x̄, ȳ denotes a sample mean, σx and σy are estimates of standard deviation of {(xi)}ni=1 and
{(yi)}ni=1 respectively. It should be now obvious that the Pearson’s correlation is very fragile with
breakdown point of zero, i.e. even a single bad data point can arbitrarily largely influence the
resulting estimate (see Figure 3 (right).)
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The most common robust version of correlation is Spearman’s correlation. The idea behind
is to use rank of data points instead of their values. For example if we have data points

{(0.1, 0.5), (0.05, 0.7), (0.4, 0.1), (0.2, 100)},

their ranks will be
{(2, 2), (1, 3), (4, 1), (3, 4)}.

Spearman’s correlation uses rank to compute the correlation similarly to Pearson’s, i.e.

rs =
1
n

∑
i[(r

x
i − r̄x)(r

y
i − r̄y)]

σrxσry
,

where rxi denotes a rank of xi in {xi}ni=1, r̄x denotes a sample mean of ranks, and σrx standard
deviation of ranks (and similarly for y). The Spearman’s correlation is robust with breakdown
point of 50%. For the example with an outlier in Figure 3 (right), the Spearman’s correlation is
rs = −0.0008 suggesting the data are independent, which is correct.
Kendalls’τ correlation goes further and replaces all quantities with their relative order. The

formula uses definition of concordant and disconcordant pairs.

• Concordant pairs are pairs of observations where orders of (xi, xj) and (yi, yj) are the same,
i.e. xi < xj and yi < yj or xi > xj and yi > yj ;

• disconcordant pairs are pairs of observations where orders of (xi, xj) and (yi, yj) do not agree,
i.e. xi > xj and yi < yj or xi < xj and yi > yj .

Denoting number of concordant pairs as nc and disconcordant pairs as nd, the Kendalls’τ is defined
as

rk =
1(
n
2

)(nc − nd).

Kendall’s τ has interesting properties. If the variables xi and yi in {(xi, yi)}ni=1 are independent,

then the coefficient rk has known distribution, i.e. rk ∼ N
(
0, 2(2n+5)

9n(n−1)

)
, which can be used in

statistical testing of independence.
The above definition of Kendalls’τ is for continuous data. For discrete data, the definition is

slightly different, as we have to account for ties.

Robust statistical tests

Robust statistical tests are robust variants of statistical tests. These tests should be used when we
do not know the distribution of the data points (recall popular t-tests assumes Normal distribution)
or data might contain outliers.

Sign test assumes data points to to come in pairs {(xi, yi)}ni=1 (to be matched in the language
of statistics). Sign test tests if differences between pairs of observations are consistent.
The test statistic is computed as follows:

1. discard samples for which |yi − xi| = 0;

2. test statistic

W =
n∑

i=1

I(yi > xi)
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Under null hypothesis W follows binomial distribution Bi(N, 0.5).
Wilcoxon-signed rank test assumes data points to come in pairs {(xi, yi)}ni=1 (to be matched

in the language of statistics). The test tests if location of distribution generating {xi}ni=1 is the
same as that generating {yi}ni=1 . The idea is to test, if difference between pairs follows a symmetric
distribution around zero.

The test statistic W is computed as follows:

1. calculate {|yi − xi|}ni=1 and discard those with |yi − xi| = 0 (for simplicity of the exposition,
we assume there are not such points);

2. rank remaining samples according to |yi − xi| (we denote the rank as ri);

3. test statistic

W =
n∑

i=1

[sgn(yi − xi) · ri]

Under null hypothesis, where we assume that locations are equal, the test statistic W has known
distribution with zero mean and variance σ2

w = n(n+1)(2n+1)
6 . For small n critical values of W are

tabulated, for large n it approximated by Normal distribution due to central limit theorem.
Wilcoxon-signed rank test should be go-to test, because even for the case where both {xi}ni=1

and {yi}ni=1 follows normal distribution and paired t-test is more appropriate, the Wilcoxon-signed
rank test has efficiency ARE = 0.95, which is very good. In other words for its robustness, we pay
very little in terms of efficiency.
Mann-Whitney U-test is non-paired version of the Wilcoxon-signed rank test. The test tests

if two populations {xi}nx
i=1 and {yi}ny

i=1 have the same location.
The test statistic is computed as follows:

1. Calculate ranks of all samples together {xi}nx
i=1 ∪ {yi}ny

i=1.

2. Sum ranks of samples from the first population, Rx.

3. Sum ranks of samples from the second population, Ry.

4. Calculate Ux = Rx − nx(n1+1)
2 and Uy = Ry − ny(ny+1)

2 .

5. U = min{Ux, Uy}

For small nx and ny, the critical values of test statistic U for null hypothesis are tabulated. For

large nx and ny we use again approximation by Normal distribution N
(
nxny

2 ,
nxny(nx+ny+1)

12

)
.

10



Bibliography

[1] Frank R Hampel. The influence curve and its role in robust estimation. Journal of the american
statistical association, 69(346):383–393, 1974.

[2] Peter J. Huber. Robust estimation of a location parameter. Annals of Mathematical Statistics,
35:492–518, 1964.

[3] Peter J Rousseeuw and Christophe Croux. Alternatives to the median absolute deviation.
Journal of the American Statistical association, 88(424):1273–1283, 1993.

11


