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Agenda

m Linear regression

a simple model with a single predictor,
parameters, interpretation, hypotheses testing,
generalization towards multiple linear regression,

special issues: qualitative predictors, outliers, collinearity,
m linear model selection and regularization

subset selection,
regularization = shrinkage, lasso, ridge regression,
choosing the optimal model, estimating test error,

m moving beyond linearity

polynomial regression,
step functions, splines,
local regression,

generalized additive models.




Linear regression

s Assumption of linearity

often simplifying assumption only

x true regression functions are rarely linear,

x still, the linear model extremely useful, both conceptually and practically,
the simplification increases ability to learn

* helps to cope with the well-known curse of dimensionality,

the simplification brings interpretability

x a reasonable number of parameters with clear meaning,

good performance preserved in case of moderate violation

x linear models can be extended otherwise.




Linear regression for the advertising data

m Consider the advertising data shown below, questions we might ask:

is there a relationship between advertising budget and sales?

how strong is the relationship between advertising budget and sales?
which media contribute to sales?

how accurately can we predict future sales?

is the relationship linear?

is there synergy among the advertising media?

Sales

Sales
15
]

) (o] 05
~ O,
AR

o
o
AT
o o] .
o
o_0 Q5
@
O(ﬁ o
el o)
o .
[e]
o
o

Sales

0 10 200 30 40 50 0 20 40 60 80 100

™ Radio Newspaper




Simple linear regression using a single predictor X

m We assume a model

Y =05)+ 61X + ¢

where 5y and J; are two unknown constants (coefficients, parameters),
they represent the and

€ is the error term, normally distributed with 0 mean, the same variance
at every X, independent,

m we predict the future values of independent variable using

y = Po+ bz
where the hat symbol denotes an estimated value,

y indicates a prediction of Y on the basis of X = z.




Estimation of the parameters by least squares

m Let y; = Bo + lei be the prediction for Y based on the ith value of X,

m then e; = y; — y; represents the ith residual,

= we define the (RSS) as

RSSZG%—FGS—F"“F@%@:Z(yi_é()_élxiy

1=1

m the least squares approach chooses BAO and Bl to minimize the RSS

ORSS _ 5 — 2z (@i = Z)(y . y)
(951 Zz’zl (ml _ l’)
ORSS A ;
—=0—=>0=y— 017
9P

m where T and ¢ are the sample means for X and Y.




Example: advertising data

m [ he least squares fit for the regression of sales onto T'V

a linear fit captures the essence of the relationship,

although it is somewhat deficient in the left of the plot,

BO: no TV advertising, around 7 (thousand) units sold,

Bl: $1,000 more spent on TV associated with selling ~48 additional units.
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Assessing the accuracy of the coefficient estimates

m Standard error of an estimator reflects how it varies under repeated sampling

SE(Bl)Q _ anl ZEZ — 53)2 SE(B())Q _ 02<771?/ + Znil (:;z _ ZC>2)

where 0% = Var(e),

RSE is o estimate, RSE = \/RSS/(m — 2).
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Coefficient confidence intervals

= Confidence interval (Cl)

100(1 — )% confidence interval is a range of values that encompasses the
true (unknown) population parameter in 100(1 — )% repeated sampling
trials like this,

there is approximately a 95% chance that the interval below will contain
the true value of 37 (under a scenario where we got repeated samples like
the present sample)

By — 2SE(By), B1 + 2SE(B))]

a more precise (and general) Cl estimate is based on 1 — /2 quantile of
a t-distribution with (m-2) degrees of freedom

[Bl — tl—oz/2,m—2SE<Bl>7 By + tl—a/Q,m—QSE(Bl)]
for the advertising data, the 95% Cl for 3 is [0.042, 0.053].




Hypothesis testing

m [he most common hypothesis test

Hy: there is no relationship between X and Y,

H 4: there is some relationship between X and Y,
= mathematically this corresponds to testing
Hy: 81 =0versus Hy : By # 0,
m the test stems from the standard error and t-statistic given by
_ B —0
- SE(B)

the statistic will have a t-distribution with m-2 degrees of freedom,

t

the corresponding p-value is the probability of observing any value equal
to |t| or larger,

both under the H assumption, i.e., assuming (3; = 0.




Assessing the overall accuracy of the model

m gives the fraction of variance explained by the model
RQ_TSS—RSS_l_RSS
B TSS B TSS

where T'SS = >, (y; — y)* stands for the total sum of squares,
and RSS =", (y; — §;)* stands for the residual sum of squares,

s while RSE mentioned earlier gives an absolute measure of its lack of fit,

= it can be shown that in this simple linear regression setting R? = r?,

where 7 is the correlation between X and Y.
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Advertising data results: X=TV, Y=Sales

Coefficient | Std. error | t-statistic | p-value
Intercept| 7.0325 0.4578 15.36 | < 0.0001
TV 0.0475 0.0027 17.67 | < 0.0001
Quantity | Value
RSE 3.26
R 10612
F-statistic | 312.1




Multiple linear regression

= Here, a following model is assumed

Y:50+51X1+62X2—|—°"—|—5PXP—|—6
m interpretation of the regression coefficients

3 represents the effect on Y of a one unit increase in X,

it perfectly fits the balanced design where the predictors are uncorrelated,
correlations among predictors cause problems

x the variance of all coefficients tends to increase, sometimes dramatically,
* interpretations become hazardous, when X; changes, everything else
changes,

example: Y = number of tackles by a football player in a season; W and H
are his weight and height; fitted regression model is Y = by+.50WW —.10H;;
how do we interpret 3y < 07

claims of causality should be avoided for observational data.




Estimation of the parameters for multiple regression

= No principal changes from the simple model,

m the prediction formula is

?):50+51$1+52x2+"'+5p37p

m the parameter estimates obtained by RSS minimization

RSS = Z (yZ — 332-)2 = Z <yz — Bo - leil — Bpxip>2
i=1 1=1
. estimation

the most simple approach,

allow efficient 3 estimation when heteroscedascity or correlations are present.




Categorical predictors

m So far, categorical and continuous independent variables treated separately
often we need to study them concurrently, employ them in regression,

= for binary predictors we create a new 0/1 variable X; with the resulting model

r;=1: 0o+ b1+
i = Po T 01X + € =
y; = Bo + B 7 =0 B+ e

interpretation: (3 is the average outcome in the zero group, 5y + 54 is
the average outcome in the positive group, (31 is the average difference in
outcomes between groups,

= however, a -1/1 dummy variable could be introduced too

v, =1:6o+bi+¢
v, =—1:0—pfi+e

the predictions will be identical, 3 values and interpretation change.

Yi = Po+ Pz + € =




Categorical predictors

m for predictors with [ levels we typically create [ — 1 dummy variables,

m e.g., ethnicity €{Asian, Caucasian, African American} could be captured by

{1 if 2th person is Asian {1 if 2th person is Caucasian
i1 = i2 =

0 if 2th person is not Asian 0 if 2th person is not Caucasian
= the level with no dummy variable (African American) is known as the baseline,

s the dummy variables appear in the regression equation

(50 + 01+ ¢; if ith person is Asian
y; = Po+Lrxii+ Bozio+ € = < By + Po + ¢ if ith person is Caucasian

\50 + ¢; if ith person is African American

interpretation: [ is the average outcome in the baseline group, (1 is the
average outcome increase in the first group, (- is the average outcome
increase in the second group (both wrt baseline).




Interaction in the advertising data?

s Regular linear model is additive

e.g., the average effect on sales of a one-unit increase in TV is always G7y,
regardless of the amount spent on radio,

m however, there is an interaction between TV and radio spending

when advertising is split between the two media, the additive linear model
tends to underestimate sales — there is synergy between the predictors.
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Modeling interactions

s Add an interaction term into the model, in the case of advertising problem

sales = 5y + B1 X TV 4 5 x radio + B3 x (TV x radio) + ¢

= in this model, the effect of TV changes with the value of radio (and vice versa)
sales = [y + (61 + (3 x radio) X TV + 5 x radio + ¢
sales = By + 51 X TV + (Bs + 83 x TV) X radio + €

m results of this model confirm the role of the interaction

Coefficient | Std. error | t-statistic | p-value

Intercept 60,7502 0.248 27.23 | < 0.0001
TV 0.0191 0.002 12.70 | < 0.0001
radio 0.0289 0.009 3.24 0.0014

TVxradio| 0.0011 0.000 20.73 | < 0.0001




Modeling interactions — interpretation and hints

m [ he p-value for the interaction term TV Xxradio is extremely low
indicating that there is strong evidence for H, : 535 # 0,

m R? for the interaction model is 96.8%

compared to only 89.7% for the model using TV and radio without an

Interaction term,

%%'5:883'77 = 69% of the variability in sales that remains after fitting the

additive model has been explained by the interaction term,

s the coefficient estimates in the table suggest that

increase in TV advertising of $1,000 is associated with increased sales of
(81 + B3 x radio) x 1000 = 19 + 1.1 X radio units,

m |If we include an interaction in a model

we should also include the main effects (TV and radio in our case), even
if the p-values associated with their coefficients are not significant.




& How regression got its name ...

Take A Break
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Figure 8.8. Galton’s graphical illustration of regression; the circles give the
average heights for groups of children whose midparental heights can be read
from the line AB. The difference between the line CD (drawn by eye to
approximalte the circles) and AB represents regression toward mediocrity.
(From Galton, 1886a.)
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Some important questions

1. Is at least one of the p predictors useful in predicting the response?
2. How well does the model fit the data?
3. Do all the predictors help to explain Y, or is only a subset of them useful?

4. Given a set of predictor values, what response value should we predict, and
how accurate is our prediction?




Is at least one predictor useful?

m Formally: Hy: 81 =02 =---= [, =0vs Hu: at least one 3; # 0,
m this test is performed by computing the F-statistic

[ (T'SS — RSS)/p
~ RSS/(m—p—1)
= in fact, we compare fit of the full (RSS) and intercept only model (TSS)

technically, we compute the ratio between explained and unexplained vari-
ance of the full model,

m provided H is true

E(TSS — RSS)/p) = E(RSS/(m —p—1)) =0* and F is close to 1,

the test is adjusted to the number of predictors p and the sample size m,

s F-statistic is compared with quantiles of F'(p, m — p — 1) distribution.




F-distribution

= x distribution with df degrees of freedom is the distribution of a sum of the
squares of df independent standard normal random variables

provided that H( holds, residuals should have normal distribution, zero
mean and equal variance,

consequently, T'S'S, RS'S as well as their additions and subtractions follow
the y? distribution . ..

s F-distribution is any distribution obtained by taking the quotient of two >

distributions divided by their respective degrees of freedom,

consequently, any F-distribution has two parameters corresponding to the
degrees of freedom for the two y? distributions,

given X ~ X?Zfl and Xy ~ X?ifQ

Xy/df,
Xo/dfs

~ Fap ap,




F-distribution in R

= find the value of I, 41 4ro:
qf (alpha, df1, df2, lower.tail = F),

s find the p-value when knowing the observed F' value:
pf (Fobs, dfl, df2, lower.tail = F).
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Advertising data results: the full model

Coefficient | Std. error | t-statistic| p-value
Intercept 2.939 0.3119 942 | < 0.0001
TV 0.046 0.0014 32.81 | < 0.0001
radio 0.189 0.0086 21.89 | < 0.0001
newspaper| -0.001 0.0059 -0.18 0.8599
Correlations| TV | radio | newspaper | sales
TV 1.0000 1 0.0548 | 0.0567 |0.7822
radio 1.0000| 0.3541 |0.5762
newspaper 1.0000 |0.2283
sales 1.0000
Quantity | Value
RSE 1.69
R? 0.897
F-statistic| 570




How well does the model fit the data?

s We have already seen that R-squared is a good quantifier for model fit, however

it cannot show us whether the model is biased or not,

features such as heteroscedasticity, non-linearity or outliers remain hidden,
0 reveals these features

most often it plots residuals as a function of predicted values,

namely when having multiple independent variables.

Standardized Residual

Predicted Predicted Predicted Predicted

Interpreting Residual Plots to Improve Your Regression (www.qualtrics.com): only the left-most residual plot meets the usual requirements.




How to improve the model?

= have significant impact on the regression model
conceptually different from outliers that significantly deviate from other
observations, but often greatly overlap,

can be detected with Cook's distance that calculates the sum of changes
in the model when observation is removed from it

A

20

A: original model, B: a low-influence point, C: influential point to be removed.




How to improve the model?

m we have already seen that correlations among predictors cause problems
coefficients fluctuate, interpretations become hazardous, overfitting,
o can be detected with variance inflation factor (VIF)

it measures the relationship between an independent variable and the other
independent variables,

1
R

where R? is the coefficient of determination when the i-th independent
variable is regressed on all the other independent variables in the model,

VIF, =

the predictors with large VIF likely do not improve the model, and could
be removed.




Deciding on the important variables

m Selection cannot be directly based on the observed predictor p-values
namely for large p, risk of false discoveries due to multiple comparisons,

= build and compare (a lot of) alternative models

repetitive application of least squares on various reduced sets of predictors,

RSS and R? are not suitable for selecting the best model

x at least, among a collection of models with different numbers of predic-
tors,

x they are related to the training error,

* the model containing all of the predictors will always have the smallest
RSS and the largest R

use a criterion that balances the training error and model size,

* to exemplify, Mallow's C,, Akaike information criterion (AlC), Bayesian
information criterion (BIC), adjusted R*, and cross-validation (CV).




Adjusted R-squared

= Unlike the R? statistic, it pays a price for unnecessary predictors,

m for a least squares model with p variables

RSS/(m —p—1)
TSS/(m—1)

a maximization criterion (unlike C, , AIC, and BIC),

Adjusted R* =1 —

a heuristic criterion, vaguely motivated in statistical theory,

irrelevant variables bring a small decrease in RSS, this decrease is out-
weighed by decrease in m — p — 1 (neither T'S'S' nor m changes with

p),
a comparative measure, different meaning than R* (a measure of fit), can
be e.g. negative.




The ways to choose the optimal model

m [ hree classes of methods

subset selection outlined before, search methods could be

* regression is not feasible, O(27),

* starts with the null model and gradually
adds the variable that results in the lowest RSS, O(p?),

* starts with the full model, gradually

removes the variable with the largest p-value in the last model, i.e., the
least significant one, O(p?), cannot be used if p > m,

dimension reduction — ordinary least squares regression in a L-dimensional
subspace, see the lectures on dimension reduction,

— we fit a model involving all p predictors, but the estimated co-
efficients are shrunken towards zero relative to the least squares estimates,
this shrinkage (also known as regularization) has the effect of reducing
variance and can also perform variable selection.




Shrinkage Methods

recall that the least squares fitting procedure estimates 3y, ..., 3, with
the values that minimize

m p
RSS =Y (yi—fo— Y _ Bjwiy)’
i=1 j=1

in contrast, the ridge regression coefficient estimates are the values that
minimize

Z — By — Zﬁjajw +>\ZB2 RSS+AZ£2
=1

where A > 0 is a tunlng parameter, to be determlned separately, typically,
CV is used,

A BA? is a with the effect of shrinking the (; esti-

mates towards zero.




Shrinkage Methods

the standard least squares coefficient estimates are scale equivariant

* multiplying X; by a constant ¢ simply leads to a scaling of the least
squares coefficient estimates by a factor of 1/c.

* regardless of how the jth predictor is scaled, X ;3; will remain the same,

in contrast, the ridge regression coefficient estimates can change substan-

tially when multiplying a given predictor by a constant

x ridge regression should be applied after standardizing the predictors

ZCZ]
\/ Zz 1 xl] ])2




Ridge regression improvement over least squares

suppose we have fit a model f(x) to some training data,

let (o, 1o) be a test observation drawn from the same population,
if the true model is Y = f(X) + € (with f(x) = E(Y|X = z)) then

AN

E(yo — f([ljo>)2 = Var(f(z)) + [B’ia8<f(£60>>]2 + Var(e)

AN AN

Bias(f(z0)) = E(f(z0)) — f(zo)

the error can be decomposed into model , and irreducible
error,

typically as the flexibility of f increases, its variance increases, and its bias
decreases,

choosing the flexibility based on average test error amounts to a bias-
variance trade-off.




Ridge regression improvement over least squares

— and the bias of the train error towards more flexible/overfit models.
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Ridge regression improvement over least squares
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Shrinkage Methods

ridge regression will include all p predictors in the final model
x disadvantage, does not help in feature selection,

lasso overcomes this problem by minimizing

m D D p

> Wwi—Bo— > Bm)+ A 1Bl =RSS+ XY |5

i=1 j=1 j=1 J=1

% in statistical parlance, the lasso uses an ¢; penalty instead of an /5
penalty applied in ridge regression,

the /; penalty has the effect of forcing some of the coefficient estimates

to be exactly equal to zero when \ is sufficiently large,

the lasso yields and performs




The variable selection property of the lasso

s Why is it that the lasso, unlike ridge regression, results in coefficient estimates
that are exactly equal to zero?

m One can show that the lasso and ridge regression coefficient estimates solve
the problems minimize

m p p
min Z (y; — Bo — Z Bjr;;)? subject to Z 15| < s
b= j=1 j=1
and
m A P P
mﬁjnz (y; — Bo — Z ﬁszj)z subject to Z ﬁf <s
i=1 j=1 j=1

= in other words, for every value of A there is some s such that the alternative
definitions lead to the same regression coefficient estimates.




Lasso and ridge regression: geometric interpretation

Lasso Ridge regression
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Selecting the value of tuning parameter

= which X value (or equivalently, the value of the constraint s) is the best?
= employ

use fresh/unseen data to estimate the expected generalization error,
calculate mean squared error M S FErp, RSS LS (v — 0)%

m in our case, proceed as follows

choose a grid of A values,

compute the cross-validation error rate for each value of A,

select either \,,;, for which the cross-validation error is smallest,

or select A4, the largest value of A\ such that error is within 1 standard
error of the minimum,

s Finally, the model is re-fit

using all of the available observations,

and the selected value of the tuning parameter.




Cross-validation

m the training error can dramatically underestimate the test error
— it is a positively biased estimate of the future generalization error,

s hold-out makes the most easy approach to model testing

— split the available data between train and validation set (70:30 ratio),

— sufficient for large data sets,

m k-fold cross-validation

— randomly split observations into k folds of (approximately) equal size,

— in k gradual runs perform training on £ — 1 folds and testing on the
remaining fold (always different),

— eventually, k estimates of the test error are averaged.

Validatio
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Comparison between \,,;,, and )\,

WSE
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Summary

s Multiple linear regression

a simple model with the strong assumption of linearity,

helps to understand concurrent effects on a target continuous variable,
m model selection and regularization may improve prediction and understanding

neither ridge regression nor the lasso will universally dominate the other,

lasso performs better when the response is a function of only a relatively
small number of predictors, however ...

... the number of predictors related to the response is never known a priori,

cross-validation can help to decide which approach is better on a particular
data set and select a value of the tuning parameter.




Anscombe’s quartet ...

Take A Break

s What would you say about the following model?

summary (lm(y ~ x,d))

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0017 1.1239 2.671 0.02559 x
X 0.4999 0.1178 4.243 0.00216 x*x

Residual standard error: 1.236 on 9 degrees of freedom
Multiple R-squared: 0.6667, Adjusted R-squared: 0.6297
F-statistic: 18 on 1 and 9 DF, p-value: 0.002165




Anscombe’s quartet ...

Take A Break

s What would you say about the following model?

A

10
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The main references

:: Resources (slides, scripts, tasks) and reading

m G. James, D. Witten, T. Hastie and R. Tibshirani: An Introduction to
Statistical Learning with Applications in R. Springer, 2014.

s K. Markham: In-depth Introduction to Machine Learning in 15 hours
of Expert Videos. Available at R-bloggers.




