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Big team project (Final assignment section in courseware)
● Start looking for 4 people team NOW

● Try to find a question/dataset that is interesting for you

● Look for previous year best projects for inspiration

● Ask question before the deadline for team creation (3.11)

● If no team on 3.11 (midterm week), then I will forcefully assign a team for you

Tips and recommendations:
● Do not focus on single question, try to combine two or more questions

● Example: Not only look for medical question, but try to add socio-economy

● Try to find more than one dataset
● Example: UNICEF + World Bank

● Start working early, at least to formulate a question



  

We have 5 variables:   Y ~      X1,      X2,     X3,    X4,     X5

● Each variable has unknown alpha threshold
● We need total_alpha (total Type I error) = 0.10 

Practical assignment: compute the adjusted p-value



  



  



  

Now with the new topic



  

https://library.virginia.edu/data/articles/diagnostic-plots

How to analyze the problems of linear regression 
visually via diagnostic plots

Linearity Normality

Homoscedasticity Influential points/Outliers?



  

More than 1 independent variable:
Normality? Are points linear? Homoscedastic?

Income=β0+β1⋅Years+β2⋅Seniority +ϵ , ϵ∈N (0 ,σ2) Variance now is an surface in 3D, not just  



  

Key Idea: project all variables into 2D and check all variables at once
> Normality/Homosced does not depend on surface shape, only

on deviations from this surface in Y axis = residuals
* You can see them as lines on the left image

> If I were to replace all X variable axes with single residual axis,
I do not lose information about these 2 properties

Why? Intuition:
> Normality/Homoscedasticity in 3D (or higher) = Normality/Homoscedasticity in EVERY AXIS X



  

~ almost linear ~ non-linear

First plot: Residual plot 
Check for linearity

If non-linear    ----       use polynomial regression  (later)



  

Third plot: Residual plot 
Check for homoscedasticity (same variance)

If heteroscedastic (different variances) ----       use weighted linear regression
                  or some transformation of data (log, sqrt, ...)

Horizontal line = homoscedastic (same variances)

Any non-horizontality = heteroscedasticty 
(difference in variance)

Alternatively just use Breusch-Pagan test



  

Heteroscedasticity 
(different variance per X)

Homoscedasticity 
(same variance per X)



  

Problem with heteroscedasticity:
larger variances have more effect on line direction



  

2 *                                    =

Idea of weighted linear regression / Weighted Least Squares (WLS)

* 0.5

* 2

* 1



  

Not quite normalSurely is normally distributed

Call QQPlot()

Second plot: Q-Q plot 
Check for normality 



  

# First: "Vanilla" OLS estimation
fit_OLS <- lm(y ~ ., data = df)

# Second: Weights
weights <- 1 / fitted(lm(abs(residuals(fit_OLS)) ~ fitted(fit_OLS))) ^ 2

# Third: Weighted least squares estimation
fit_WLS <- lm(y ~  ., data = df, weights = weights)

https://stackoverflow.com/questions/74417257/how-do-i-set-the-weighed-in-linear-regression-
model-in-r

How to use it in R:



  

For every point: compare slope with point and without point. 
If it is larger than a given threshold, we mark this point as influential point

Fourth plot: Influential point plot 
Check for outliers/influential points



  

full_lm = lm(y ~ ., data=df)
plot(full_lm, which = 4)

How to use it in R:

https://stats.stackexchange.com/questions/164099/removing-outliers-based-on-cooks-
distance-in-r-language

Output:
# 7  16   29   ….



  

Additional testing: multicollinearity



  

How to use it in R:

If value is > 2.0 or > 2.5, strong multicollinearity, should remove the highest variable
and repeat until no multicollinearity left 

cor_matrix <- cor(mtcars[c("disp", "hp", "wt", "drat")])

● Find out which pairs have linear connection between them



  

~ non-linear First plot: Residual plot 
Check for linearity

How to fit a non-linear model?
Use polynomial regression!



If I see something like: Then I want a Polynomial of degree 2

Y=β0+β1⋅X+ϵ ,
ϵ∈N (0 ,σ2)

Y=β0+β1⋅X+β2⋅X
2+ϵ ,

ϵ∈N (0 ,σ2)

It will look like this:From this:

How do I fit it? Use multivariate approach:

> creating synthetic data from given data
     and just run OLS algorithm again

X1=X
X2=X

2

...
X P=X

P

Y=β0+β1⋅X1+β2⋅X 2+ ...+βP⋅X P+ϵ ,
ϵ∈N (0 ,σ2)

Polynomial regression



  

How to determine the degree of polynomial?

https://bhs229.weebly.com/
uploads/5/7/9/8/5798388/notes_-
_analyzing_and_sketching_polynom
ial_functions_smart_pdf.pdf



  

Some strange R poly() stuff? Well, not really:

X1=X
X2=X

2

...
X P=X

P

x⃗=(
1
2
...

100
)→( 1 12 13

2 22 23

.. ... ...
100 1002 1003) But they are correlated! 

May cause some problem,since:

correlation = broken assumption of LM 

x⃗=(
1
2
...

100
)→( 1 12 13

2 22 23

.. ... ...
100 1002 1003)→Gramm-Schmidt ortog→(

−0.17 0.22 −0.25
.. ... ...
.. ... ...

0.15 0.14 0.21
)=X⃗ ortog

Even though they are changed = changed coefficients,

but their predictions are the same!

predict(lm with x coefs) = predict(lm with x_ortog coefs) 



If I see something like:

Y=β0+β1⋅X+ϵ ,
ϵ∈N (0 ,σ2)

Y=β0+β1⋅X+ϵ , if X<15
Y=β2+β3⋅X+ϵ , if X≥15

ϵ∈N (0 ,σ2)

It will look like this:From this:

How do I fit it? Train each interval separately, e.g., divide data into 2 separate LM calls
OR

Add a categorial switch variable for every interval change = knot

Step functions

               |
             15
(knot) = interval change point

Then I want two separate linear models on 
every interval

Y=β0+β1⋅X+β2⋅(X≥15)+ϵ
ϵ∈N (0 ,σ2)



If I see something like: Then I want a Polynomial of large degree

X1=X
X2=X

2

...
X P=X

P

Y=β0+β1⋅X1+β2⋅X 2+ ...+βP⋅X P+ϵ ,
ϵ∈N (0 ,σ2)

But the shape is too complex, do I really need to do the P=12 degree polynomial???

Nope, combine previous two approaches: 1) Divide interval into several parts

2) Fit simple, say 3-degree polynomial in it

Piece-wise polynomial



But what if I need to have a continuous function, 
not some unrelated polynomial parts?

E.g.:

Y 2=β20+β21⋅X+β22⋅X
2+...+β2 P⋅X

P+ϵ , if X≥C
ϵ∈N (0 ,σ2)

Y 1=β10+β11⋅X+β12⋅X
2+...+β1P⋅X

P+ϵ , if X<C
ϵ∈N (0 ,σ2)

+ Continuity constraints:

      

Y 1(C )=Y 2(C)(same point ,0−continuity)
Y 1 '(C )=Y 2 ' (C)(same first derivative ,1−continuity)

Y 1 ' ' (C )=Y 2 ' ' (C)(same second derivative ,2−continuity )

TOO HARD!

<- Same point              ^^^
Same first derivative



  

Splines

Splines will ensure maximum continuity ( d-1 for polynom with degree d ) with an easy formula:

<
<   construct first interval polynom
<

< Every time we hit another knot, 
          We change all coeficients (beta0 – beta 3).
          Largest degree (3 for cubic) encapsulates every other

term inside: 
                       x^3 - A x^2 + B x - C                       

We don’t have time to cover the math, refer to the lectures!

We don’t have time to cover the smoothing splines either!



Okay, I have a [Polynomial/Step function/Piece-wise poly/Spline/…….], 

but how do I know which 

[degree of polynom/ number of interval points(knots) /  …/ any other non-LinearReg parameter]

To choose?
Choose a set of models:

1) Split data into 10 folds 

2) For every model:

       For every possible fold id(1, 2, …, 10):

    2.0) Combine 9/10 folds intro train, 1/10 into test set

    2.1)  fit on 9/10 train folds

    2.2) Compute RSS/F-stat/adjusted R^2 on 1/10 test fold

3) Average test errors from 2.2) for across all fold id

4) Choose the best model by averaged score from 3)

degree=4 , degree=5 ,... , degree=12
number of intervals : 4 ,5 ,6 , ... ,11

Cross validation! model1=[degree=4 , knots=4 ] ,
model2=[degree=4 , knots=5 ] , ... .



  

Or you could proceed with ANOVA/F-test comparison or other way of comparing nested models

Y=β0+β1⋅X 1+β2⋅X2+ϵ ,
ϵ∈N (0 ,σ2)

Y=β0+β1⋅X+ϵ ,
ϵ∈N (0 ,σ2)

Y=β0+β1⋅X+β2⋅X
2+ϵ ,

ϵ∈N (0 ,σ2)
=====

Y=β0+β1⋅X 1+β2⋅X2+β3⋅X 3+ϵ ,
ϵ∈N (0 ,σ2)

Y=β0+β1⋅X+β2⋅X
2+β3⋅X

3+ϵ ,
ϵ∈N (0 ,σ2)

=====

And then just use AIC / F-stat as in ANOVA / adjusted R^2 



  

● You can think of this as following:

● Addition of more variables (or degrees in polynomial)
makes the prediction more precise (smaller variance)

● But decrease from 1.1% to 1.09% is too small and 
the computational complexity is spent for nothing

● Moreover, with more variables we need more and more
samples to maintain same variance quality
● Bias-variance tradeoff
● Is exactly how Cross-validation works!



  

We can choose the position of knots if number of them is given:
 
quantiles = 

such that each interval between knots has the same number of points

> optimality control  via Cross-Validation

5 points 5 points

5 points
5 points



Okay, finally I can do it for 1 variable, but what if two variables have different models? How to combine them?

Generalized Additive Models
(GAMs)

> Just add them and assume additivity(no interactions)
> Or, if interaction are REALLY needed, 
R library will do it for you!

gam(… + ns(age,df=5):ns(year,df=5))

gam(
wage  ns(year, df = 5) + ns(age, df = 5) + education∼
)



  

Some strange plot? Boxplot = categorical X distribution

X 3 groups =

Remove distribution plots



  

df$animal <- as.factor(df$animal) df$reaction <- as.factor(df$reaction)
df$reaction <- ordered(df$reaction, 
levels = c("fantastic", "okay", 
"dontlike"))



  

Categorical(Discrete) X? Just use Polynomial or Step function)



  

Please open the today’s activity .zip file and find the:

You will find the activity (voluntary) questions at the end:

Deadline: 20.10.2025 (next seminar, voluntary, 1 point)



  

● Today a big homework will be presented now and the countdown starts
● You will have ~ 2 weeks to complete it, the time is parallel to every-week small HW

Deadline: 20.10.2025 (two weeks, full points)
               27.10.2025 (three weeks, half points)
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