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Big team project (Final assignment section in courseware)

» Start looking for 4 people team NOW

Try to find a question/dataset that is interesting for you

Look for previous year best projects for inspiration

Ask question before the deadline for team creation (3.11)

If no team on 3.11 (midterm week), then | will forcefully assign a team for you

Tips and recommendations:
* Do not focus on single question, try to combine two or more questions
* Example: Not only look for medical question, but try to add socio-economy

* Try to find more than one dataset
* Example: UNICEF + World Bank

« Start working early, at least to formulate a question



Practical assignment: compute the adjusted p-value

We have 5 variables: Y ~ X1, X2, X3, X4, X5

« Each variable has unknown alpha threshold 1-(1—a)”
* We need total_alpha (total Type I error) = 0.10




The method proposed by Sid4k is defined as p?i =1-— (l — pj)M. Equivalently, the

significance level could be adjusted to adl =1 — (1-— Ct)l‘f M, where a is the unadjusted

significance level. Under the assumption that the outcomes are independent, the adjustment
can be derived as

P (no Type I error on 1 test) = 1 — oSt

-\ M
— P (no Type I error on M tests) = (1 = CtSi) ;

\M
— P (atleast one Type I error on M tests) = 1 — (1 — aSi) =



Null hypothesis is true

(Ho)
Test is declared significant V
Test is declared non- U
significant
Total my

m is the total number hypotheses tested

e m — my iS the number of true alternative hypotheses

e T'is the number of false negatives (Type Il error)
o U is the number of true negatives

my is the number of true null hypotheses, an unknown parameter

S is the number of true positives (also called "true discoveries")

Alternative hypothesis is true
(Ha)

V'is the number of false positives (Type | error) (also called "false discoveries")

« R =V + § is the number of rejected null hypotheses (also called "discoveries", either true or false)



Now with the new topic



Residuals

JIStandardized residualsl

https://library.virginia.edu/data/articles/diagnostic-plots

How to analyze the problems of linear regression
visually via diagnostic plots

Residuals vs Fitted
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Income = f3,+f3,- Years + f3,-Seniority +¢, €€ N (0, o) Variance now is an surface in 3D, not just

Surfcs Pigl of Tesld
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Key Idea: project all variables into 2D and check all variables at once

> Normality/Homosced does not depend on surface shape, only
on deviations from this surface in Y axis = residuals
* You can see them as lines on the left image

> |f | were to replace all X variable axes with single residual axis,
| do not lose information about these 2 properties

Why? Intuition:
> Normality/Homoscedasticity in 3D (or higher) = Normality/Homoscedasticity in EVERY AXIS X

an observation (y1,y2,y3)

2 fitted point (§1.92.93)

__ solutions are in the plane
~2Z~—" alinear combination of x_1 and x_2

\ population mean

Y3 observations/samples spread around this point




Residuals
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First plot: Residual plot
Check for linearity
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use polynomial regression (later)



+IStandardized residualsl
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Third plot: Residual plot

Check for homoscedasticity (same variance)

Scale-Location
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Im(Ozone ~ Temp)

If heteroscedastic (different variances) ----
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Standardized Residual

Predicted Predicted

Horizontal line = homoscedastic (same variances)

Any non-horizontality = heteroscedasticty
(difference in variance)

Alternatively just use Breusch-Pagan test

use weighted linear regression

or some transformation of data (log, sqrt, ...)



Homoscedasticity

Heteroscedasticity
(different variance per X)

Dansity

Heteroscedasticity

Homoscedasticity
(same variance per X)
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Problem with heteroscedasticity:
larger variances have more effect on line direction

Heteroskedastic Errors
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Dansity

Standard normal distribution

Standard normal distribution
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Idea of weighted linear regression /| Weighted Least Squares (WLS)



Lamphe Quantilic

Second plot: Q-Q plot
Check for normality

Call QQPIot()

Surely is normally distributed
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How to use it in R:

minzwf (i — B;)°

=1

# First: "Vanilla" OLS estimation
fit_OLS <- lm(y ~ ., data = df)

# Second: Weights
weights <- 1 / fitted(lm(abs(residuals(fit_OLS)) ~ fitted(fit_OLS))) A 2

# Third: Weighted least squares estimation
fit_WLS <- lm(y ~ ., data = df, weights = weights)

https://stackoverflow.com/questions/74417257/how-do-I-set-the-weighed-in-linear-regression-
model-in-r



Fourth plot: Influential point plot
Check for outliers/influential points

For every point: compare slope with point and without point.
If it is larger than a given threshold, we mark this point as influential point

With Influential Point Without Influential Point
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How to use it in R:

full_lm = lm(y ~ ., data=df)
plot(full_lm, which = 4)

which(cooks.distance(full 1m) > 4 / (nrow(d) - length(coef(full 1lm))))

Coolk's distance

. - Output:
#7 16 29

0.30
|
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|

Cook's distance

— 29
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0.00

Cibs. number

https://stats.stackexchange.com/questions/164099/removing-outliers-based-on-cooks-
distance-in-r-language



Additional testing: multicollinearity

m we have already seen that correlations among predictors cause problems
coefficients fluctuate, interpretations become hazardous, overfitting,
. can be detected with variance inflation factor (VIF)

it measures the relationship between an independent variable and the other
independent variables,

VIFE, = ‘
11— R

where R? is the coefficient of determination when the i-th independent

variable is regressed on all the other independent variables in the model,

the predictors with large VIF likely do not improve the model, and could
be removed.



How to use it in R:

cor_matrix <- cor(mtcars[c("disp", "hp", "wt", "drat")])

* Find out which pairs have linear connection between them

4L

| n F rnFantial mulFiecenll s nesrd Fi
# detect Ir'?lJ?.'t'.‘.'.'flr'.fl. multicollinearity

vif(full 1m)

disp hp wt drat
8.20940232.894373 5.096601 2.279547

X1

-0.27

X2

X3

-0.25

X 2
0.05 0.03
0.08 0.02

If value is > 2.0 or > 2.5, strong multicollinearity, should remove the highest variable

and repeat until no multicollinearity left

08

0.6

ro4

roz

r-0.2

F-04



Rasioua’
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First plot: Residual plot
Check for linearity

How to fit a non-linear model?
Use polynomial regression!



If | see something like: Then | want a Polynomial of degree 2

‘02. . { ;}:.. .2. ...
T e TN
XL
@ .‘O.:
... ® .s
From this: It will look like this:
Y=B,+p, - X+e, ‘ Y=B,+B,- X+B, X’ +¢,
e€N(0,0°) e€N(0,0%)

How do I fit it? Use multivariate approach: X =X Y=B,+0,X,+6, X, +..+6,- X, +¢€,

2 2
> creating synthetic data from given data X 2 =X €EN ( 0,0 )
and just run OLS algorithm again

p
X, =X
Polynomial regression



How to determine the degree of polynomial?
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Some strange R poly() stuff? Well, not really:

— 2 3
X=X 1 1 12 13 But they are correlated!
X, =X T 2 N 2 2 2 May cause some problem,since:
B correlation = broken assumption of LM
X,=x" 100/ {100 100° 100’
1 1 1 T ~0.17 022 —0.25
| 2 2 22 2 . . N
X= - - Gramm-Schmidt ortog -» =X ortog
100/ 1100 100° 100° 0.15 0.14 0.21

Even though they are changed = changed coefficients,

but their predictions are the same!

predict(Im with x coefs) = predict(Im with x_ortog coefs)




If | see something like: Then | want two separate linear models on
every interval

From this: 15 It will look like this:
(knot) = interval change point
Y=fo*h X +e, ‘ Y =B+, X +c,if X<15
e€N(0,0°) Y=B,+pB,; X+¢,if X=15
eeN(0, 02)

How do | fit it? Train each interval separately, e.g., divide data into 2 separate LM calls
OR
Add a categorial switch variable for every interval change = knot
Y=p,+B, X+, (X=15)+¢
EEN( 0 02) Step functions



If | see something like: .. Then | want a Polynomial of large degree

0.00 6.2 6.50 0.7 1.50
X1: X X
X = x> Y=B,+p, X, +, X +...+, X p+¢, | | |
2 €EEC N(O (72) Piece-wise polynomial
X :XP But the shape is too complex, do | really need to do the P=12 degree polynomial???
p=

Nope, combine previous two approaches: 1) Divide interval into several parts

2) Fit simple, say 3-degree polynomial in it



But what if | need to have a continuous function,
not some unrelated polynomial parts?

E.Q.:
Y =B+ Biy X+B, X2+ 4P, X +e,

eeEN(0,0°)
Y, =Bt o X+ X2t 4, X e,

€c N(O , 02) «

S
+ Continuity constraints: Y,(C)=Y,(C)(same point ,0— continuity )
Y,'(C )= '(C)(same first derivative , 1— continuity )
(C )=Y,""(C)(same second derivative ,2— continuity )

TOO HARD!



Splines will ensure maximum continuity ( d-1 for polynom with degree d ) with an easy formula:
= we can represent this model with truncated power basis functions

Yi = Bo + Bibi(xi) + Bobalzi) + - - - + Brasbri3(Ti) + € Splines
s where the b, are
bi(zi) = x; <
by(z;) = 2 < construct first interval polynom
) = T )
bq(’l}) — T?
brss(zi) = (i —&)3 k=1,...,K < Every time we hit another knot,
" We change all coeficients (betaO — beta 3).
BRWIS | s Largest degree (3 for cubic) encapsulates every other
(s — 0] = (i = &) F2:i>& term inside:
' ' 0 otherwise

x"N3-Ax2+Bx-C

We don’t have time to cover the math, refer to the lectures!

We don’t have time to cover the smoothing splines either!



Okay, | have a [Polynomial/Step function/Piece-wise poly/Spline/

but how do | know which

[degree of polynom/ number of interval points(knots) / .../ any other non-LinearReg parameter]

To choose?
Choose a set of models: degree=4, degree=5 ,... ,degree =12
number of intervals: 4,5,6,...,11
1) Split data into 10 folds
Cross validation! model ,=[degree=4 ,knots=4],
2) For every model: model,=[degree =4 ,knots=5]1, ....

For every possible fold id(1, 2, ..., 10):
2.0) Combine 9/10 folds intro train, 1/10 into test set
2.1) fit on 9/10 train folds
2.2) Compute RSS/F-stat/adjusted R”2 on 1/10 test fold
3) Average test errors from 2.2) for across all fold id

4) Choose the best model by averaged score from 3)



Or you could proceed with ANOVA/F-test comparison or other way of comparing nested models

Y=(+p,  X+e,

e€eN(0,0°)
Y=p0+p X1+ fo Xote, ===== Y=0B,+B,- X+B,- X’ +¢,
eeN(0,0") €eeEN(0,07)
Y =00+ X+ P X+ s X3+ e, == Y:/30+/31-X+[52-X2+ﬁ3-X3+e,
EEN(O,()'2) EEN(O,O’Z>

And then just use AIC / F-stat as in ANOVA / adjusted R"2



Variance

4.00_
3.00_
2.00_

1.00_]

00_

* You can think of this as following:

0.01

RERR T LI T T 1
0.1 1 10

Averaging length, m (logarithmic scale)

TTTTT|
100

* Addition of more variables (or degrees in polynomial)
makes the prediction more precise (smaller variance)

 But decrease from 1.1% to 1.09% is too small and
the computational complexity is spent for nothing

* Moreover, with more variables we need more and more
samples to maintain same variance quality
* Bias-variance tradeoff

Is exactly how Cross-validation works!

Total Error

Variance

Optimum Model Complexity

Error

——

1!
J

o

Model Complexity



We can choose the position of knots if number of them is given:

quantiles =
such that each interval between knots has the same number of points

> optimality control via Cross-Validation

Q1=10
S points 5 points
_ 5 points
® S points
® o0 @
o000 00 060 O 00O o000 O

I I I || I N I T I B I N I T I B
T rr+ -+t -+—1° 11>t 1> 117 17 1 1 1T 1]
5 10 15 20 25 30



Okay, finally | can do it for 1 variable, but what if two variables have different models? How to combine them?

> Just add them and assume additivity(no interactions)

Jalyear)

30 -20 10 O
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]

10 20

Y = 6[} 5 _f]_(:}:.-j_'_]_) G fQ(.’I}.f_Q) ot B A fp(:}}.ﬁp) =k €;

falage)

e L
2003 2005 2007 2009

year

gam(
wage ~ ns(year, df = 5) + ns(age, df = 5) + education

)
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> Or, if interaction are REALLY needed,

<Coll  Coll =Coll

education

R library will do it for you!

gam(... + ns(age,df=5):ns(year,df=5))

Generalized Additive Models
(GAMSs)



Probability Density

Some strange plot? Boxplot = categorical X distribution
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Remove distribution plots




Fantastic Don’t Like

df$animal <- as.factor(df$animal) df$reaction <- as.factor(df$reaction)
df$reaction <- ordered(df$reaction,
levels = c("fantastic", "okay",
"dontlike"))



Categorical(Discrete) X? Just use Polynomial or Step function)

Fitted Line Plot
length = 13.62 + 54.05 age
- 4,719 age”2

age

Posterior median, 90%- and 99%-credible intervals f(x) pointwise in time

5 10.9061
R-5q B0.1% s
R-Sgladjl  T9E%

Response

0.00 0.25 0.50 0.75 1.00
Time



Please open the today’s activity .zip file and find the:

4 13.10. JB, AA, Non-linear regression emsan_nonlinear.zip, ampres_4.pdf
JK

You will find the activity (voluntary) questions at the end:

Further questions to answer (homework):

1. Have a look at other predictors. What treatment would you recommend for them?
2. Which non-linear model would you recommend for wage prediction (considering all the predictors)? Show a model that improves the gam
model tested in the last chunk.

Deadline: 20.10.2025 (next seminar, voluntary, 1 point)



* Today a big homework will be presented now and the countdown starts
* You will have ~ 2 weeks to complete it, the time is parallel to every-week small HW

3 7.10. JB, AA, Shrinked linear emsan_fs.ziff, emassignment1.zip | emlab3.zip msLinear regression.pptx
JK regression

Deadline: 20.10.2025 (two weeks, full points)
27.10.2025 (three weeks, half points)



Are data linear?

No

Are data nhormal?

Add Polynomials/
Generalizec(iGAddiﬁve Models
A

MS) No

variables
Are data homoscedastic?
Use
Generalized Linear Models
LMs) Yes

with other distributions other than Gaussian N
(Next week)

Any outliers
r influential points?

Apply -
transformation (log/sqrt/~1/7)

or Yes No
Weighted Least Squares (WLS)
Any correlated
variables?
Useéﬁook's disThance
and remove them
(or more advanced methods >
on Week 10, Tomas Pevny)
7
Apply .
VIF to find Apply Feature Selection
which variables —> |oop with Cross-validation

should be removed (both variables and polynomial parameters)
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