B4M36SAN BE4M36SAN Seminar/Tutorial

Alikhan Anuarbekov

Ali

anuarali@fel.cvut.cz

Big team project (Final assignment section in courseware)

- Start looking for 4 people team NOW
- Try to find a question/dataset that is interesting for you
- Look for previous year best projects for inspiration
- Ask question before the deadline for team creation (3.11)
- If no team on 3.11 (midterm week), then I will forcefully assign a team for you

Tips and recommendations:

- Do not focus on single question, try to combine two or more questions
 - Example: Not only look for medical question, but try to add socio-economy
- Try to find more than one dataset
 - Example: UNICEF + World Bank
- Start working early, at least to formulate a question

Practical assignment: compute the adjusted p-value

We have 5 variables: Y ~ X1, X2, X3, X4, X5

- Each variable has unknown alpha threshold
- We need total_alpha (total Type I error) = 0.10

$$1-(1-\alpha)^n$$

The method proposed by Šidák is defined as $p_i^{\text{Si}} = 1 - (1 - p_i)^M$. Equivalently, the significance level could be adjusted to $\alpha^{\text{Si}} = 1 - (1 - \alpha)^{1/M}$, where α is the unadjusted significance level. Under the assumption that the outcomes are independent, the adjustment can be derived as

nificance level. Under the assumption that the outcomes are independent, the adjustment be derived as
$$P\left(no\ Type\ I\ error\ on\ \mathbf{1}\ test\right) = 1 - \alpha^{\mathrm{Si}},$$

$$egin{aligned} & o P \left(no \, Type \, I \, error \, on \, \mathbf{M} \, tests
ight) = \left(1 - lpha^{ ext{Si}}
ight)^M, \ & o P \left(oldsymbol{atleast} \, one \, Type \, I \, error \, on \, \mathbf{M} \, tests
ight) = 1 - \left(1 - lpha^{ ext{Si}}
ight)^M = lpha. \end{aligned}$$

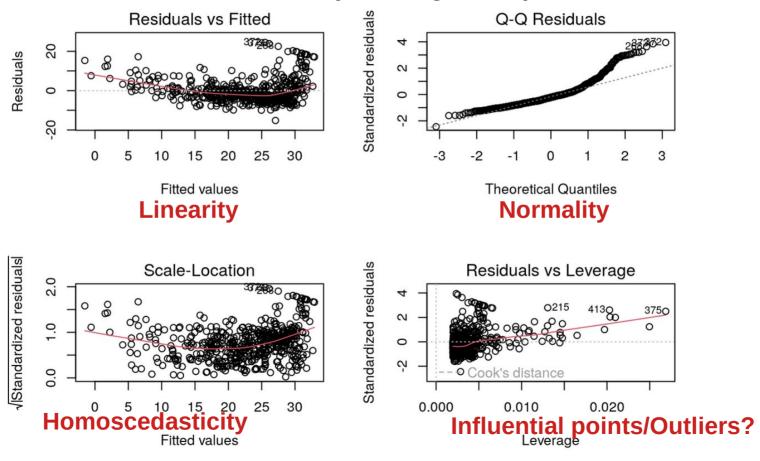
$$e\ Type\ I\ error\ on\ \mathrm{M}\ tests) = 1 - \Big(1 - lpha^{\mathrm{Si}}\,\Big) \quad = lpha.$$

	Null hypothesis is true (H_0)	Alternative hypothesis is true (H _A)	Total
Test is declared significant	V	S	R
Test is declared non- significant	U	T	m-R
Total	m_0	$m-m_0$	m

- *m* is the total number hypotheses tested
- m_0 is the number of true null hypotheses, an unknown parameter
- $m-m_0$ is the number of true alternative hypotheses
- V is the number of false positives (Type I error) (also called "false discoveries")
- S is the number of true positives (also called "true discoveries")
- *T* is the number of false negatives (Type II error)
- *U* is the number of true negatives
- ullet R=V+S is the number of rejected null hypotheses (also called "discoveries", either true or false)

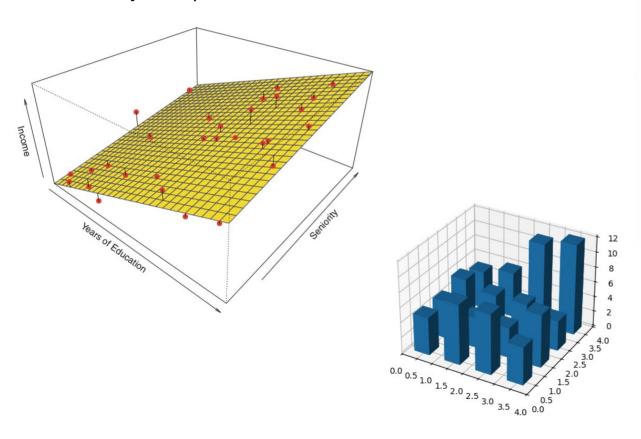
https://library.virginia.edu/data/articles/diagnostic-plots

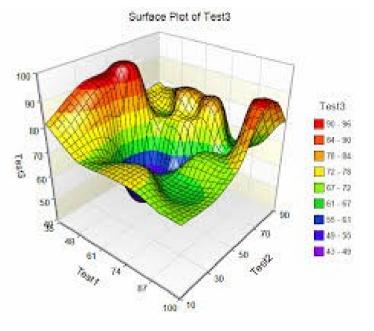
How to analyze the problems of linear regression visually via diagnostic plots



Income = $\beta_0 + \beta_1$ · Years + β_2 · Seniority + ϵ , $\epsilon \in N(0, \sigma^2)$ Variance now is an surface in 3D, not just

More than 1 independent variable: Normality? Are points linear? Homoscedastic?



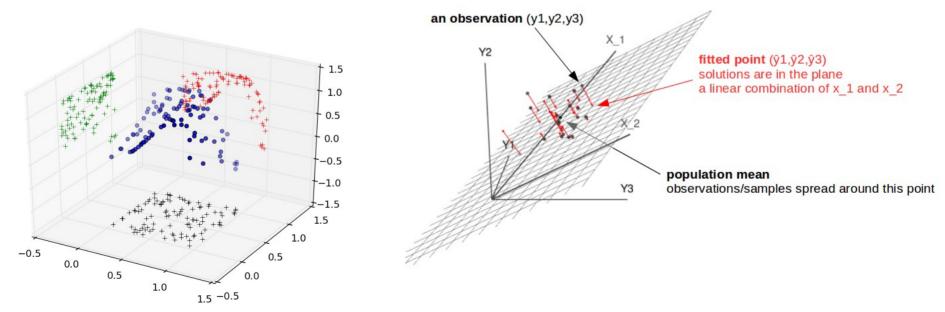


Key Idea: project all variables into 2D and check all variables at once

- Normality/Homosced does not depend on surface shape, only on deviations from this surface in Y axis = residuals
 * You can see them as lines on the left image
- > If I were to replace all X variable axes with single residual axis, I do not lose information about these 2 properties

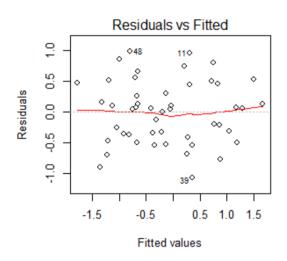
Why? Intuition:

> Normality/Homoscedasticity in 3D (or higher) = Normality/Homoscedasticity in EVERY AXIS X

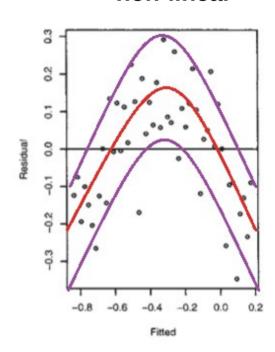


First plot: Residual plot Check for linearity

~ almost linear

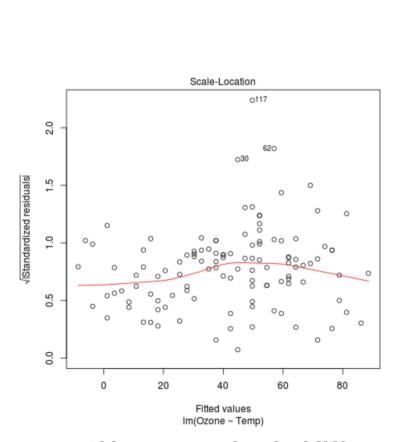


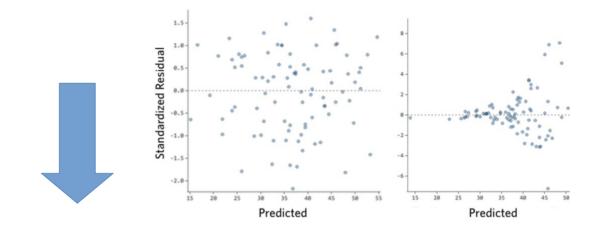
~ non-linear



If non-linear ---- use polynomial regression (later)

Third plot: Residual plot Check for homoscedasticity (same variance)



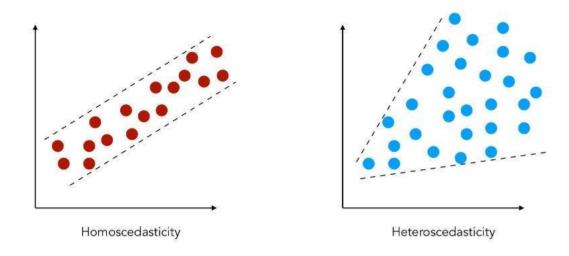


Horizontal line = homoscedastic (same variances)

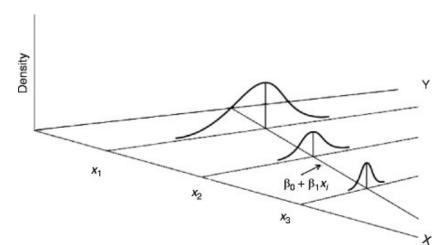
Any non-horizontality = heteroscedasticty (difference in variance)

Alternatively just use Breusch-Pagan test

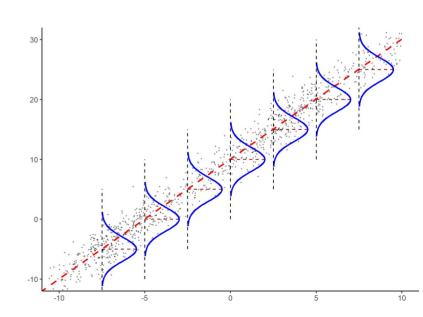
If heteroscedastic (different variances) ---- use weighted linear regression or some transformation of data (log, sqrt, ...)



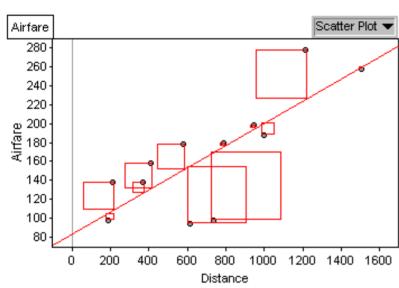
Heteroscedasticity (different variance per X)

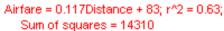


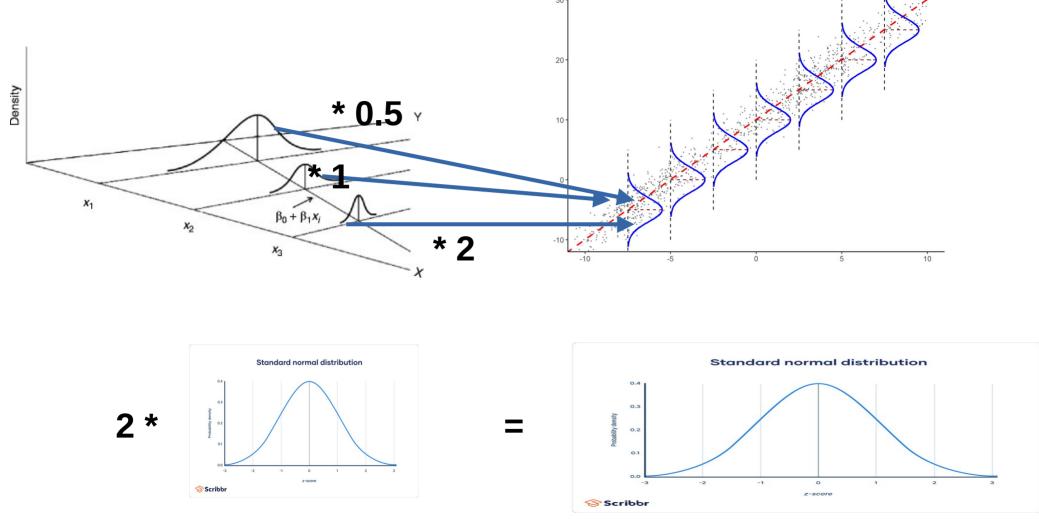
Homoscedasticity (same variance per X)



Problem with heteroscedasticity: larger variances have more effect on line direction





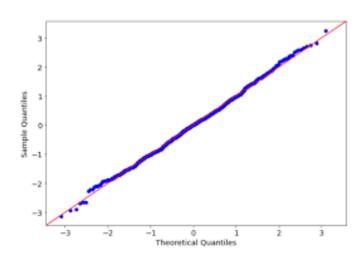


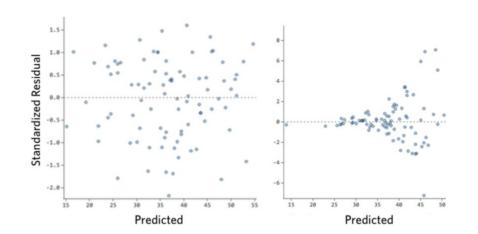
Idea of weighted linear regression / Weighted Least Squares (WLS)

Second plot: Q-Q plot Check for normality

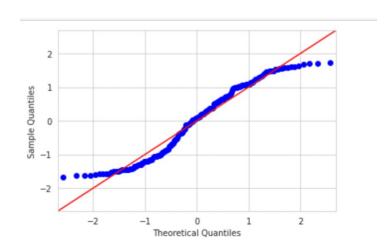
Call QQPlot()

Surely is normally distributed





Not quite normal



How to use it in R:

$$\min \sum_{i=1}^n w_i \cdot (y_i - \hat{y}_i)^2$$

First: "Vanilla" OLS estimation

```
fit_OLS <- lm(y \sim ., data = df)

# Second: Weights
weights <- 1 / fitted(lm(abs(residuals(fit_OLS)) \sim fitted(fit_OLS))) ^ 2

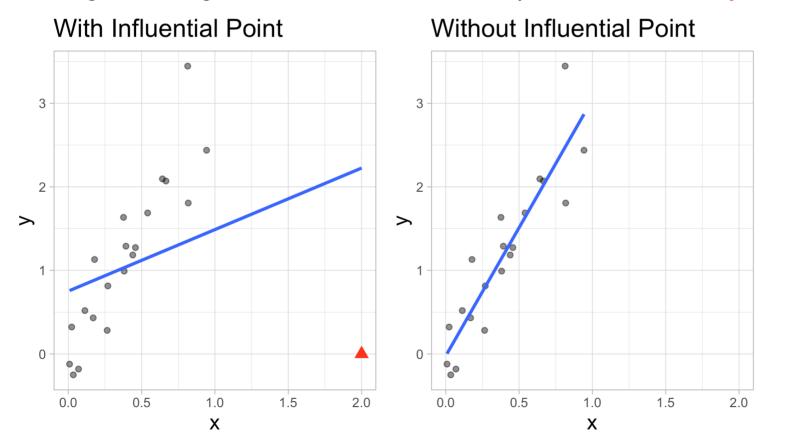
# Third: Weighted least squares estimation
fit_WLS <- lm(y \sim ., data = df, weights = weights)
```

https://stackoverflow.com/questions/74417257/how-do-i-set-the-weighed-in-linear-regression-model-in-r

Fourth plot: Influential point plot Check for outliers/influential points

For every point: compare slope <u>with point</u> and <u>without point</u>.

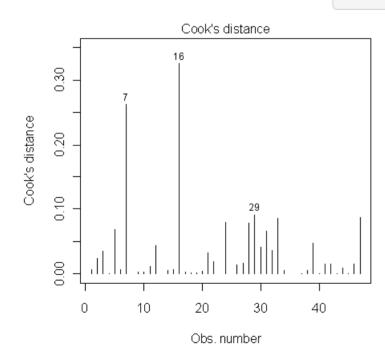
If it is larger than a given threshold, we mark this point as <u>influential point</u>



How to use it in R:

```
full_lm = lm(y ~ ., data=df)
plot(full_lm, which = 4)
```

```
which(cooks.distance(full_lm) > 4 / (nrow(d) - length(coef(full_lm))))
```



Output: # 7 16 29 ...

https://stats.stackexchange.com/questions/164099/removing-outliers-based-on-cooks-distance-in-r-language

Additional testing: multicollinearity

- we have already seen that correlations among predictors cause problems
 - coefficients fluctuate, interpretations become hazardous, overfitting,
- multicollinearity can be detected with variance inflation factor (VIF)
 - it measures the relationship between an independent variable and the other independent variables,

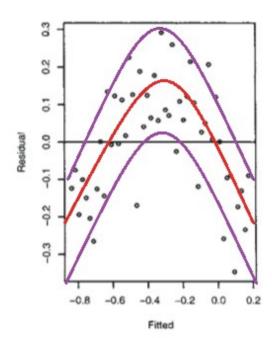
$$VIF_i = \frac{1}{1 - R_i^2}$$

- where R_i^2 is the coefficient of determination when the i-th independent variable is regressed on all the other independent variables in the model,
- the predictors with large VIF likely do not improve the model, and could be removed.

How to use it in R:

If value is > 2.0 or > 2.5, strong multicollinearity, should remove the highest variable and repeat until no multicollinearity left

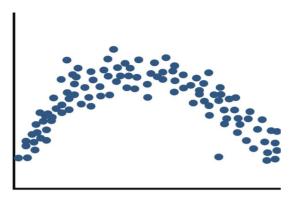
~ non-linear



First plot: Residual plot Check for linearity

How to fit a non-linear model? Use polynomial regression!

If I see something like:



From this:

$$Y = \beta_0 + \beta_1 \cdot X + \epsilon,$$

$$\epsilon \in N(0, \sigma^2)$$

How do I fit it? Use multivariate approach:

 $X_1 = X$

$$X_2 = X^2$$

...

$$X_P = X^P$$

It will look like this:

$$Y = \beta_0 + \beta_1 \cdot X + \beta_2 \cdot X^2 + \epsilon,$$

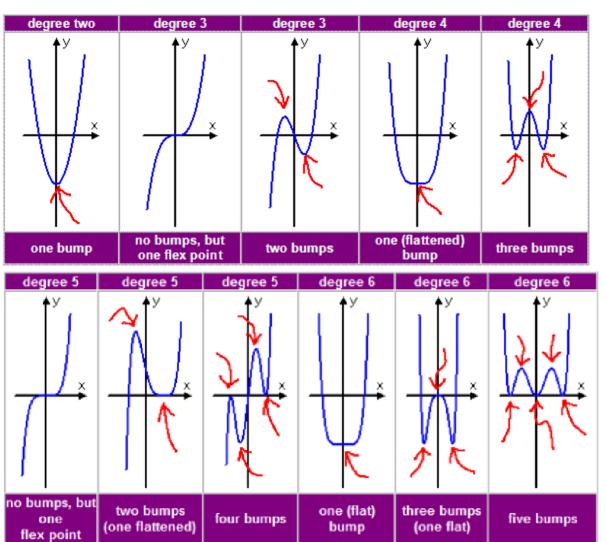
$$\epsilon \in N(0, \sigma^2)$$

$$Y = \beta_0 + \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + \dots + \beta_P \cdot X_P + \epsilon,$$

$$\epsilon \in N(0, \sigma^2)$$

Polynomial regression

How to determine the degree of polynomial?



https://bhs229.weebly.com/ uploads/5/7/9/8/5798388/notes_-_analyzing_and_sketching_polynom ial_functions_smart_pdf.pdf Some strange R poly() stuff? Well, not really:

But they are correlated!
May cause some problem,since:

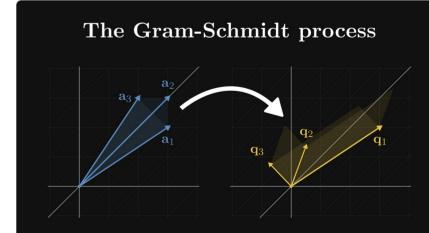
correlation = broken assumption of LM

$$\vec{x} = \begin{pmatrix} 1 \\ 2 \\ ... \\ 100 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1^2 & 1^3 \\ 2 & 2^2 & 2^3 \\ ... & ... & ... \\ 100 & 100^2 & 100^3 \end{pmatrix} \rightarrow \text{Gramm-Schmidt ortog} \rightarrow \begin{pmatrix} -0.17 & 0.22 & -0.25 \\ ... & ... & ... \\ 0.15 & 0.14 & 0.21 \end{pmatrix} = \vec{X}_{ortog}$$

Even though they are changed = changed coefficients,

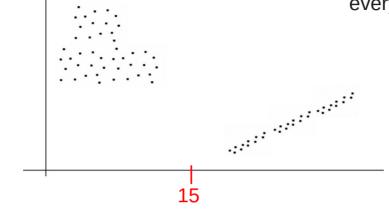
but their predictions are the same!

 $predict(Im with x coefs) = predict(Im with x_ortog coefs)$



If I see something like:

Then I want two separate linear models on every interval



From this:

(knot) = interval change point

 $Y = \beta_0 + \beta_1 \cdot X + \epsilon,$ $\epsilon \in N(0, \sigma^2)$

It will look like this:

$$Y = \beta_0 + \beta_1 \cdot X + \epsilon, if X < 15$$

$$Y = \beta_2 + \beta_3 \cdot X + \epsilon, if X \ge 15$$

$$\epsilon \in N(0, \sigma^2)$$

How do I fit it? Train each interval separately, e.g., divide data into 2 separate LM calls

Add a categorial switch variable for every interval change = knot

$$Y = \beta_0 + \beta_1 \cdot X + \beta_2 \cdot (X \ge 15) + \epsilon$$
$$\epsilon \in N(0, \sigma^2)$$

Step functions

Then I want a Polynomial of large degree If I see something like: 2-:1: $X_1 = X$ $X_2 = X^2$ $Y = \beta_0 + \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + \dots + \beta_p \cdot X_p + \epsilon$ Piece-wise polynomial $\epsilon \in N(0, \sigma^2)$ $X_{P} = X^{P}$ But the shape is too complex, do I really need to do the P=12 degree polynomial????

1) Divide interval into several parts Nope, combine previous two approaches:

2) Fit simple, say 3-degree polynomial in it

But what if I need to have a continuous function, not some unrelated polynomial parts?

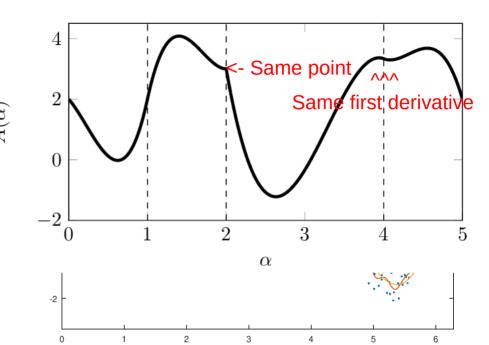
E.g.:

$$Y_{1} = \beta_{10} + \beta_{11} \cdot X + \beta_{12} \cdot X^{2} + \dots + \beta_{1P} \cdot X^{P} + \epsilon, \quad \text{if } X < C \stackrel{\mathfrak{S}}{=}$$

$$\epsilon \in \mathbb{N}(0, \sigma^{2})$$

$$Y_{2} = \beta_{20} + \beta_{21} \cdot X + \beta_{22} \cdot X^{2} + \dots + \beta_{2P} \cdot X^{P} + \epsilon, \quad \text{if } X \ge C$$

$$\epsilon \in N(0, \sigma^{2})$$



+ Continuity constraints:

$$Y_{1}(C) = Y_{2}(C) (same \ point \ , 0-continuity)$$

$$Y_{1}'(C) = Y_{2}'(C) (same \ first \ derivative \ , 1-continuity)$$

$$Y_{1}''(C) = Y_{2}''(C) (same \ second \ derivative \ , 2-continuity)$$

TOO HARD!

Splines will ensure maximum continuity (d-1 for polynom with degree d) with an easy formula:

• we can represent this model with truncated power basis functions

$$y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \dots + \beta_{K+3} b_{K+3}(x_i) + \epsilon_i$$
 Splines

• where the b_k are basis functions

where

$$(x_i - \xi_k)_+^3 = \begin{cases} (x_i - \xi_k)^3 & \text{if } x_i > \xi_k \\ 0 & \text{otherwise} \end{cases}$$

We change all coeficients (beta0 – beta 3).

Largest degree (3 for cubic) encapsulates every other term inside:

 $x^3 - A x^2 + B x - C$

We don't have time to cover the math, refer to the lectures!

We don't have time to cover the smoothing splines either!

```
Okay, I have a [Polynomial/Step function/Piece-wise poly/Spline/.....],
```

but how do I know which

[degree of polynom/ number of interval points(knots) / .../ any other non-LinearReg parameter]

To choose?

Choose a set of models: degree=4, degree=5,...,degree=12 number of intervals: 4,5,6,...,11

2) For every model:

1) Split data into 10 folds

Cross validation!

•

For every possible fold id(1, 2, ..., 10):

- 2.1) fit on 9/10 train folds
- ,
- 2.2) Compute RSS/F-stat/adjusted R^2 on 1/10 test fold

2.0) Combine 9/10 folds intro train, 1/10 into test set

 $model_1 = [degree = 4, knots = 4],$

 $model_3 = [degree = 4, knots = 5],$

- 3) Average test errors from 2.2) for across all fold id
- 4) Choose the best model by averaged score from 3)

Or you could proceed with ANOVA/F-test comparison or other way of comparing **nested** models

$$Y = \beta_0 + \beta_1 \cdot X + \epsilon,$$

$$\epsilon \in N(0, \sigma^2)$$

$$Y = \beta_0 + \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + \epsilon,$$

$$\epsilon \in N(0, \sigma^2)$$

$$Y = \beta_0 + \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + \epsilon,$$

$$\epsilon \in N(0, \sigma^2)$$

$$Y = \beta_0 + \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + \beta_3 \cdot X_3 + \epsilon,$$

$$Y = \beta_0 + \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + \beta_3 \cdot X_3 + \epsilon,$$

$$Y = \beta_0 + \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + \beta_3 \cdot X_3 + \epsilon,$$

$$Y = \beta_0 + \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + \beta_3 \cdot X_3 + \epsilon,$$

$$Y = \beta_0 + \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + \beta_3 \cdot X_3 + \epsilon,$$

$$Y = \beta_0 + \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + \beta_3 \cdot X_3 + \epsilon,$$

$$Y = \beta_0 + \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + \beta_3 \cdot X_3 + \epsilon,$$

$$Y = \beta_0 + \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + \beta_3 \cdot X_3 + \epsilon,$$

$$Y = \beta_0 + \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + \beta_3 \cdot X_3 + \epsilon,$$

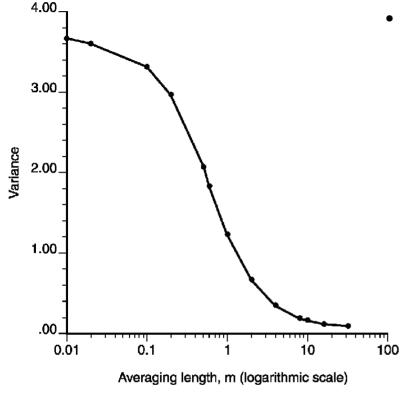
$$Y = \beta_0 + \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + \beta_3 \cdot X_3 + \epsilon,$$

$$Y = \beta_0 + \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + \beta_3 \cdot X_3 + \epsilon,$$

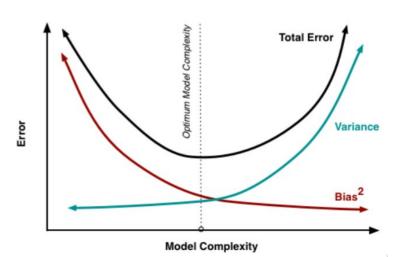
 $\epsilon \in N(0, \sigma^2)$

And then just use AIC / F-stat as in ANOVA / adjusted R^2

 $\epsilon \in N(0, \sigma^2)$



- You can think of this as following:
 - Addition of more variables (or degrees in polynomial) makes the prediction more precise (smaller variance)
 - But decrease from 1.1% to 1.09% is too small and the computational complexity is spent for nothing
 - Moreover, with more variables we need more and more samples to maintain same variance quality
 - Bias-variance tradeoff
 - Is exactly how Cross-validation works!

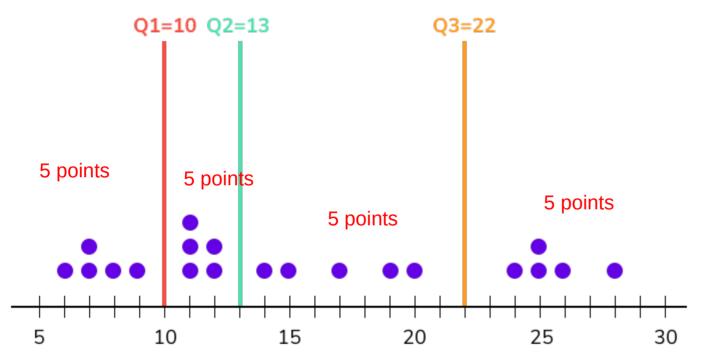


We can choose the position of knots if number of them is given:

quantiles =

such that each interval between knots has the same number of points

> optimality control via Cross-Validation

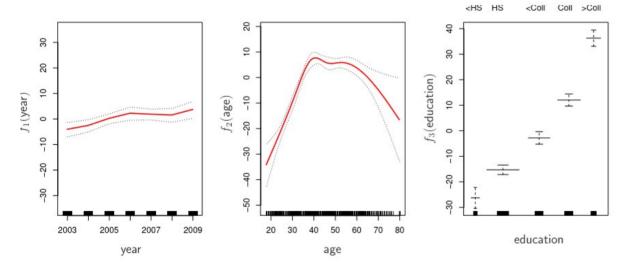


> Just add them and assume additivity(no interactions)

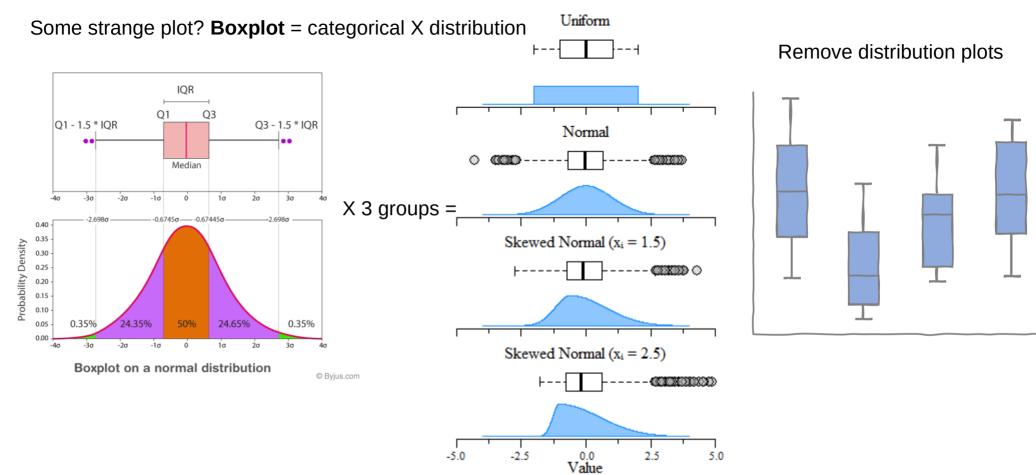
$$y_i = \beta_0 + f_1(x_{i1}) + f_2(x_{i2}) + \dots + f_p(x_{ip}) + \epsilon_i$$

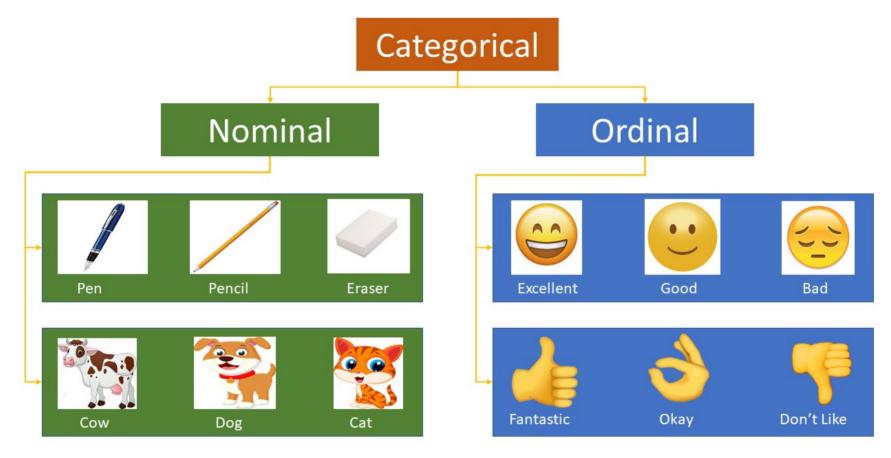
> Or, if interaction are REALLY needed, R library will do it for you!

gam(... + ns(age,df=5):ns(year,df=5))



gam(wage \sim ns(year, df = 5) + ns(age, df = 5) + education) **Generalized Additive Models** (GAMs)

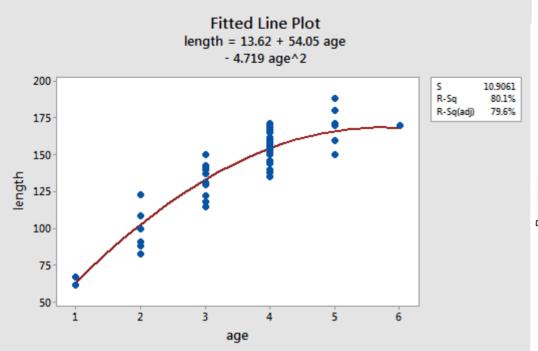




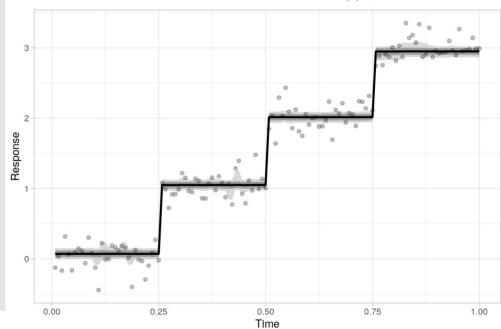
df\$animal <- as.factor(df\$animal)</pre>

df\$reaction <- as.factor(df\$reaction)
df\$reaction <- ordered(df\$reaction,
levels = c("fantastic", "okay",
"dontlike"))</pre>

Categorical(Discrete) X? Just use Polynomial or Step function)







Please open the today's activity .zip file and find the:

You will find the activity (voluntary) questions at the end:

Further questions to answer (homework):

- 1. Have a look at other predictors. What treatment would you recommend for them?
- 2. Which non-linear model would you recommend for wage prediction (considering all the predictors)? Show a model that improves the gam model tested in the last chunk.

Deadline: 20.10.2025 (next seminar, voluntary, 1 point)

- Today a big homework will be presented now and the countdown starts
 - You will have ~ 2 weeks to complete it, the time is parallel to every-week small HW

Deadline: 20.10.2025 (two weeks, full points) 27.10.2025 (three weeks, half points)

