Robust statistics

Tomáš Pevný

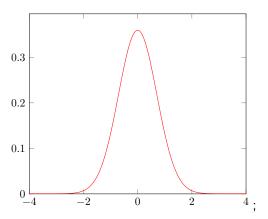
November 25, 2024

Goals of robust statistics

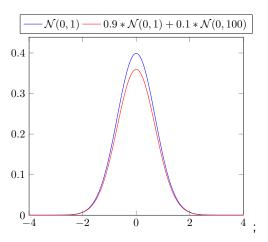
It should not be affected by

- the presence of outliers (even malicious)
- or in-correctness of assumed probability distribution.

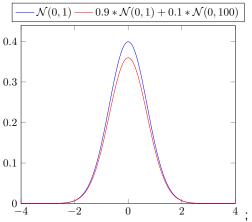
Which distribution is this?



Motivation

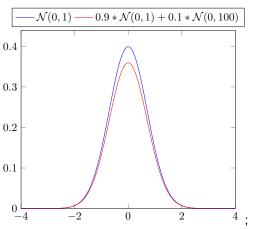


Motivation



mean estimated from 1000 samples: $-5 \cdot 10^{-3}$, 0.49

Motivation



median estimated from 1000 samples: -0.012, -0.013

Plan

How to compare estimators

Estimators of location

Estimators of scale

M-estimators

Robust regression

Measuring (testing) correlation between variables

Non-parametric tests

Breakdown Point

Breakdown Point: the largest proportion of sample observations which may be given arbitrary values without taking the estimator to a limit uninformative about the parameter being estimated.

Example: Breakdown point

Breakdown point of

- mean is 0,
- ▶ median is 50%.

Gross error sensitivity

Influence function

$$\operatorname{IF}(x|p,\eta) = \lim_{\varepsilon \to 0} \frac{\eta((1-\varepsilon)p + \varepsilon \delta_x) - \eta(p)}{\varepsilon}$$

- p probability distribution
- η estimator
- δ_x dirac function at x

Gross error sensitivity

Influence function

$$\operatorname{IF}(x|p,\eta) = \lim_{\varepsilon \to 0} \frac{\eta((1-\varepsilon)p + \varepsilon \delta_{x}) - \eta(p)}{\varepsilon}$$

Gross error sensitivity

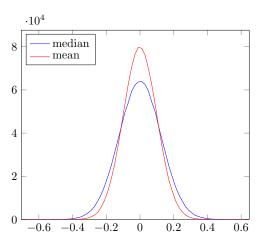
$$GES(p, \eta) = \sup_{x} |IF(x)|$$

- p probability distribution
- η estimator
- δ_{x} dirac function at x

How to measure efficiency

How is the sampling distribution of the estimator spread about the true value?

How to measure efficiency



Distribution of mean and median estimates from 100 samples from $\mathcal{N}(0,1)$.

Asymptotic relative efficiency

Asymptotic relative efficiency (ARE) is defined as

$$ARE(\hat{\eta}_1, \hat{\eta}_2, p) = \frac{V_2}{V_1},$$

where $\frac{V_1}{n}$, $\frac{V_2}{n}$ are variances of estimators $\hat{\eta}_1$, $\hat{\eta}_2$ of a parameter μ of probability distribution p.

Example of comparison of efficiency:

Assuming x_i are i.i.d samples from $N(\mu, \sigma)$

Example of comparison of efficiency:

Assuming x_i are i.i.d samples from $N(\mu, \sigma)$

- ► $Med(X_{n_2}) = med\{x_1, ..., x_{n_2}\} \sim \mathcal{N}\left(\mu, \frac{1}{4p^2(\mu)n_2}\right)$
- Median and mean estimates are equally precise, iff

$$n_1 = \sigma_p^2 4 p^2(\mu) n_2$$

ARE of median to mean for $\mathcal{N}(0,1)$ is ARE(Med, \bar{X}) = $\frac{2}{\pi}$ = 0.6366.

Plan

How to compare estimators

Estimators of location

Estimators of scale

M-estimators

Robust regression

Measuring (testing) correlation between variables

Non-parametric tests

Estimators of location

- mean
- median
- ▶ *q*%-trimmed
- ▶ *q*%-winsorized
- ► Hodges-Lehmann

Mean

$$\{-39.61, -26.29, -1.07, -0.92, -0.85, -0.16, 0.93, 1.91, 2.18, 133.65\}$$

- mean $\frac{1}{n}\sum_{i} x_{i} = 6.97$
- Zero breakdown
- Optimal if samples follows Normal distribution.

Median

$$\{-39.61, -26.29, -1.07, -0.92, -0.85, -0.16, 0.93, 1.91, 2.18, 133.65\}$$

- median $median\{x_1,...,x_{10}\} = -0.51$
- ► 50% breakdown
- ► ARE = 0.637 for Normal distribution

q%-trimmed

$$\{ \textcolor{red}{-39.61}, \textcolor{red}{-26.29}, \textcolor{blue}{-1.07}, \textcolor{blue}{-0.92}, \textcolor{blue}{-0.85}, \textcolor{blue}{-0.16}, 0.93, 1.91, \textcolor{blue}{2.18}, \textcolor{blue}{133.65} \}$$

- lacktriangle calculate mean from samples $\left\{x|x_{q\%} \le x \le x_{1-q\%}\right\}$
- ightharpoonup mean $\frac{1}{|\mathscr{X}_q|}\sum_{X\in\mathscr{X}_q}x_i=-0.41$
- ▶ q% breakdown
- ► ARE = 0.943 for Normal distribution

q%-Windsorized

$$\{-1.07, -1.07, -1.07, -0.92, -0.85, -0.16, 0.93, 1.91, 1.91, 1.91\}$$

- ▶ replace samples outside $\langle x_{q\%}, x_{1-q\%} \rangle$ by bounds, return mean.
- q% breakdown
- Robust alternative to mean, more dependant on the distribution then median.

Hodges-Lehman

$$\{-39.61, -26.29, -1.07, -0.92, -0.85, -0.16, 0.93, 1.91, 2.18, 133.65\}$$

- $\blacktriangleright \text{ HL} = \text{med}\left\{\frac{x_i + x_j}{2} | i, j \in N\right\} = -0.03$
- 0.29 breakdown
- ► ARE = 0.955 for Normal distribution

Comparison of location estimators

location
6.97
-0.51
-0.41
0.33
-0.03

Plan

How to compare estimators

Estimators of location

Estimators of scale

M-estimators

Robust regression

Measuring (testing) correlation between variables

Non-parametric tests

Estimators of scale

- sample standard deviation
- ▶ median absolute deviation
- \triangleright S_n
- ► Q

Sample standard deviation

- (unbiassed) formula: $\sigma^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i \bar{x})^2$
- (biassed) formula: $\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i \bar{x})^2$
- breakdown point 0
- ► ARE=1 optimal for Normal distribution

Median absolute deviation

- ▶ formula: $MAD = med\{|x_i med\{x_i\}|\}$
- ▶ breakdown point 50%
- ► For Normal distribution
 - ► ARE=0.37
 - $\hat{\sigma} = 1.4826 \cdot \text{MAD}$

$$S_n$$

- ▶ formula: $S_n = \text{med}_i\{\text{med}_j|x_i x_j|\}$
- ▶ breakdown point 29%
- ► For Normal distribution
 - ► ARE=0.86
 - $\hat{\sigma} = 1.0483 \cdot S_n$

- ightharpoonup sample standard deviation $Q = \{|x_i x_j||i < j\}_{q_{25}}$
- ▶ breakdown point 50%
- ► For Normal distribution
 - ► ARE=0.82
 - $\hat{\boldsymbol{\sigma}} = 2.2219 \cdot \boldsymbol{Q}$

Plan

How to compare estimators

Estimators of location

Estimators of scale

M-estimators

Robust regression

Measuring (testing) correlation between variables

Non-parametric tests

Question

Why mean is so popular?

$$\arg\max_{\mu}\mathscr{L} = \prod_{i} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x_i - \mu)^2}$$

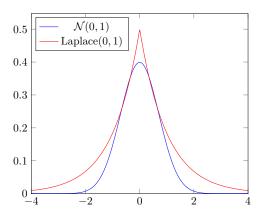
$$\arg\max_{\mu} \mathscr{L} = \prod_{i} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^{2}}(x_{i}-\mu)^{2}}$$

$$\arg\max_{\mu} \log L = -\frac{1}{2\sigma^{2}} \sum_{i} (x_{i}-\mu)^{2} - \log\sqrt{2\pi}\sigma$$

$$\arg\max_{\mu} \mathscr{L} = \prod_{i} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^{2}}(x_{i}-\mu)^{2}}$$

$$\arg\max_{\mu} \log L = -\frac{1}{2\sigma^{2}} \sum_{i} (x_{i}-\mu)^{2} - \log\sqrt{2\pi}\sigma$$

$$\mu = \frac{1}{n} \sum_{i} x_{i}$$



Assuming $x \sim \text{Laplace}(\mu, \sigma)$, then maximum likelihood estimate (ML) of μ from $\{x_1, \ldots, x_n\}$ is

Assuming $x \sim \text{Laplace}(\mu, \sigma)$, then maximum likelihood estimate (ML) of μ from $\{x_1, \ldots, x_n\}$ is

$$\arg\max_{\mu}\mathscr{L} = \prod_{i} \frac{1}{2\sigma} e^{-\frac{1}{\sigma}|x_{i} - \mu|}$$

Assuming $x \sim \text{Laplace}(\mu, \sigma)$, then maximum likelihood estimate (ML) of μ from $\{x_1, \dots, x_n\}$ is

$$\arg\max_{\mu} \mathscr{L} = \prod_i \frac{1}{2\sigma} e^{-\frac{1}{\sigma}|x_i - \mu|}$$

$$\arg\max_{\mu} \log \mathscr{L} = -\frac{1}{\sigma} \sum_i |x_i - \mu| - \log 2\sigma$$

Assuming $x \sim \text{Laplace}(\mu, \sigma)$, then maximum likelihood estimate (ML) of μ from $\{x_1, \dots, x_n\}$ is

$$\arg\max_{\mu} \mathscr{L} = \prod_{i} \frac{1}{2\sigma} e^{-\frac{1}{\sigma}|x_{i} - \mu|}$$

$$\arg\max_{\mu} \log \mathscr{L} = -\frac{1}{\sigma} \sum_{i} |x_{i} - \mu| - \log 2\sigma$$

$$0 = \sum_{i} \operatorname{sgn}(x_{i} - \mu)$$

Question

Can we generalize this?

$$\arg\max_{\mu} \mathscr{L} = \prod_{i} \frac{1}{Z} e^{-\rho(\frac{x_{i}-\mu}{\sigma})}$$

$$\arg\max_{\mu}\mathscr{L} = \prod_{i} \frac{1}{Z} e^{-\rho(\frac{x_{i}-\mu}{\sigma})}$$

$$\arg\max_{\mu}\log\mathcal{L} = -\sum_{i}\rho(\frac{x_{i}-\mu}{\sigma}) - \log Z$$

$$\arg\max_{\mu} \mathscr{L} = \prod_{i} \frac{1}{Z} e^{-\rho(\frac{x_{i}-\mu}{\sigma})}$$

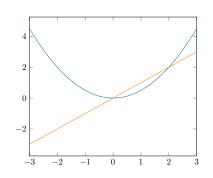
$$\arg\max_{\mu} \log \mathscr{L} = -\sum_{i} \rho(\frac{x_{i}-\mu}{\sigma}) - \log Z$$

$$0 = \sum_{i} \rho'(\frac{x_{i}-\mu}{\sigma}).$$

Normal distribution

$$ightharpoonup \rho' = x$$

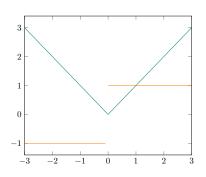
$$\blacktriangleright \mu = \frac{1}{n} \sum_i x_i$$



Laplace distribution

$$\rho' = \operatorname{sgn}(x)$$

$$0 = \sum_{i} \operatorname{sgn}(x_{i} - \mu)$$



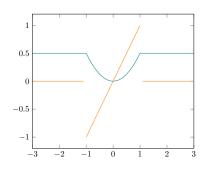
Huber loss (not called Huber)

$$\rho = \begin{cases} \frac{x^2}{2} & |x| < a \\ \frac{a^2}{2} & |x| \ge a \end{cases}$$

$$\rho' = \begin{cases} x & |x| < a \\ 0 & |x| \ge a \end{cases}$$

$$\blacktriangleright \mu = \frac{1}{n_{< a}} \sum_{i|abs(x_i) < a} x_i$$

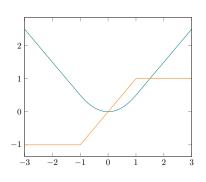
trimming



Huber loss (called Huber)

$$\mu = \frac{1}{n} \left[\sum_{i|abs(x_i) < a} x_i + n_{>a} \cdot a \right]$$

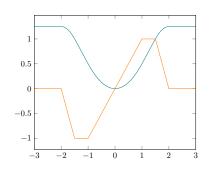
Windsorizing



Hampel loss

$$\rho = \begin{cases}
\frac{x^2}{2} & 0 \le x < a \\
ax - \frac{a^2}{2} & a \le x < b \\
\frac{a(x-c)^2}{2(b-c)} + \frac{1}{2}a(b+c-a) & b \le x < c \\
\frac{1}{2}a(b+c-a) & c \le x
\end{cases}$$

$$\rho' = \begin{cases} x & 0 \le x < a \\ a & a \le x < b \\ \frac{a(x-c)}{b-c} & b \le x < c \\ 0 & c \le x \end{cases}$$



Caveats of robust losses

- ▶ To use them you need to set a scale use robust estimate.
- Robust losses might have unfavourable efficiency.
- Sometimes you need to select parameters.
- Hampel loss is not convex difficult to optimize.

Plan

How to compare estimators

Estimators of location

Estimators of scale

M-estimators

Robust regression

Measuring (testing) correlation between variables

Non-parametric tests

Least-square regression is an M-estimator

Generative model behind OLS is

$$y = x^{\mathrm{T}} \beta + \varepsilon, \varepsilon \sim \mathcal{N}(0, \sigma^2).$$

Least-square regression is an M-estimator

Generative model behind OLS is

$$y = x^{T}\beta + \varepsilon, \varepsilon \sim \mathcal{N}(0, \sigma^{2}).$$

Therefore

$$p(y|x,\beta,\sigma^2) \sim \mathcal{N}(x^T\beta,\sigma^2)$$

Least-square regression is an M-estimator

Generative model behind OLS is

$$y = x^{\mathrm{T}}\beta + \varepsilon, \varepsilon \sim \mathcal{N}(0, \sigma^2).$$

Therefore

$$p(y|x, \beta, \sigma^2) \sim \mathcal{N}(x^T \beta, \sigma^2)$$

and

$$\hat{\beta} = \arg\min_{\beta} \sum_{i} (x_i^{\mathrm{T}} \beta - y_i)^2.$$

Robust regression

Assume different distribution of noise

$$y = x^{\mathrm{T}} \boldsymbol{\beta} + \boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim \mathrm{Laplace}(0, \boldsymbol{\sigma}).$$

Robust regression

Assume different distribution of noise

$$y = x^{\mathrm{T}}\beta + \varepsilon, \varepsilon \sim \mathrm{Laplace}(0, \sigma).$$

and obtain median absolute regression

$$\hat{\beta} = \arg\min_{\beta} \sum_{i} |x_{i}^{\mathrm{T}} \beta - y_{i}|.$$

Robust regression

Replace the mean estimate by robust alternatives

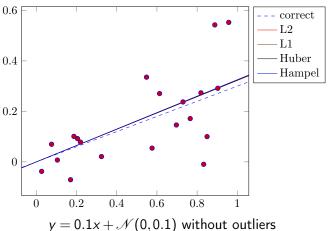
► Huber A: least median of squares (LMS)

$$\hat{\beta} = \arg\min_{\beta} \operatorname{med} \left\{ (x_i^{\mathrm{T}} \beta - y_i)^2 \right\}$$

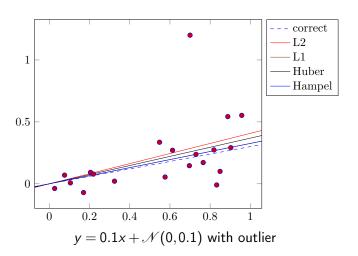
Huber B: least trimmed squares (LTS)

$$\hat{\beta} = \arg\min_{\beta} \sum_{i} (x_i^{\mathrm{T}} \beta - y_i)_{(j)}^2$$

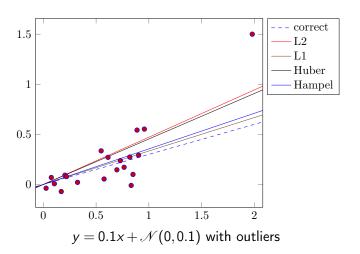
Examples of robust regression



Examples of robust regression



Examples of robust regression



Plan

How to compare estimators

Estimators of location

Estimators of scale

M-estimators

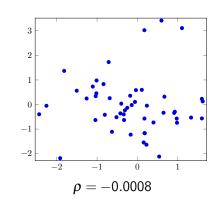
Robust regression

Measuring (testing) correlation between variables

Non-parametric tests

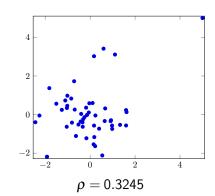
Pearson's correlation

- ► Assume pairs of samples $\{(x_i, y_i)\}_{i=1}^n$



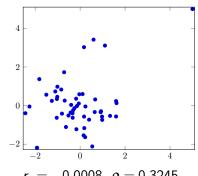
Pearson's correlation

- ► Assume pairs of samples $\{(x_i, y_i)\}_{i=1}^n$
- ► Breakdown point is zero



Spearman's correlation

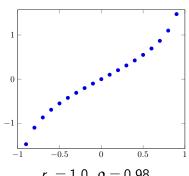
- ▶ Replaces $\{x_i, y_i\}_i$ by ranks $\{r_i^x, r_i^y\}_i$



$$r_s = -0.0008, \, \rho = 0.3245$$

Spearman's correlation

- \triangleright Replaces $\{x_i, y_i\}_i$ by their ranks $\{r_i^x, r_i^y\}_i$
- Statistic $r_s \sqrt{\frac{n-2}{1-r^2}}$ follows Student-t



$$r_s = 1.0, \, \rho = 0.98$$

Kendall correlation

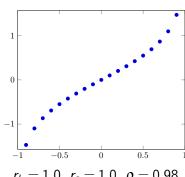
- \triangleright Kendalls' τ removes all quantities and uses order
- Samples are concordant if

$$ightharpoonup x_i < x_i$$
 and $y_i < y_i$

$$\triangleright$$
 $x_i > x_i$ and $y_i > y_i$

$$r_k = \frac{1}{\binom{n}{2}} (n_c - n_d)$$

$$\qquad \qquad \tau \sim \mathcal{N}\left(0, \frac{2(2N+5)}{9N(N-1)}\right)$$



$$r_k = 1.0, r_s = 1.0, \rho = 0.98$$

Kendall correlation

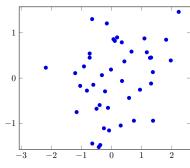
- ightharpoonup Kendalls'au removes all quantities and uses order
- ► Samples are concordant if

$$ightharpoonup x_i < x_i$$
 and $y_i < y_i$

$$\triangleright$$
 $x_i > x_i$ and $y_i > y_i$

$$r_k = \frac{1}{\binom{n}{2}} (n_c - n_d)$$

$$\qquad \qquad \tau \sim \mathcal{N}\left(0, \frac{2(2N+5)}{9N(N-1)}\right)$$



$$r_k = 0.34, \; r_s = 0.48, \; \rho = 0.55$$

Plan

How to compare estimators

Estimators of location

Estimators of scale

M-estimators

Robust regression

Measuring (testing) correlation between variables

Non-parametric tests

Sign test

Tests if differences between pairs of observations are consistent.

Sign test

Population of pairs $\{(x_i, y_i)\}_i$

- 1. discard samples for which $|y_i x_i| = 0$
- 2. test statistic

$$W = \sum_{i=1}^{N_r} I(y_i > x_i)$$

3. under null hypothesis W follows binomial distribution $\operatorname{Bi}(N,0.5)$

Wilcoxon-signed rank test

Tests if population of two related (matched) samples have equal mean rank.

Test hypothesis of Wilcoxon-signed rank test

Difference between pairs follows a symmetric distribution around zero.

Wilcoxon-signed rank test

Population of pairs $\{(x_i, y_i)\}_i$

- 1. calculate $|y_i x_i|$ and discard those with $|y_i x_i| = 0$
- 2. rank remaining samples according to $|y_i x_i|$
- 3. test statistic

$$W = \sum_{i=1}^{N} [\operatorname{sgn}(y_i - x_i) \cdot R_i]$$

- 4. under null hypothesis W has
 - zero mean
 - variance $\sigma_w^2 = \frac{N(N+1)(2N+1)}{6}$
- 5. For small N critical values are tabulated.
- 6. For large N with $z = \frac{W}{\sigma_W}, \sigma_W$

Discussion of sign and signed-rank test

- Sign test have less assumptions needs only order relationship
- Signed rank test have higher power: ARE is 0.67.
- ▶ Would differences follows normal distribution, paired t-test is more appropriate; ARE is 0.95.
- ▶ Generalization of a sign test to *n*-tuples is a Friedman test.

Mann-Whitney U-test

Tests, whether a probability that a value from population X is greater than a value from population Y (and vice versa) is greater than 0.5.

Tests, whether the distributions of both populations are equal.

Mann-Whitney U-test

- 1. Assume we have $\{(x_i)\}_{i=1}^{n_1}$
- 2. Calculate ranks of all samples together.
- 3. Sum ranks of samples from the first population, R_1 .
- 4. Sum ranks of samples from the second population, R_2 .
- 5. Calculate $U_1 = R_1 \frac{n_1(n_1+1)}{2}$ and $U_2 = R_2 \frac{n_2(n_2+1)}{2}$.
- 6. $U = \min\{U_1, U_2\}$
- 7. For small n_1, n_2 critical values are tabulated, for large n_1, n_2 $U \sim \mathcal{N}\left(\frac{n_1 n_2}{2}, \frac{n_1 n_2 (n_1 + n_2 + 1)}{12}\right)$.