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Goals of robust statistics

It should not be affected by
» the presence of outliers (even malicious)

> or in-correctness of assumed probability distribution.



Which distribution is this?
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mean estimated from 1000 samples: —5-1073, 0.49




Motivation
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median estimated from 1000 samples: —0.012, —0.013




Plan

How to compare estimators



Breakdown Point

Breakdown Point: the largest proportion of sample observations
which may be given arbitrary values without taking the estimator to
a limit uninformative about the parameter being estimated.



Example: Breakdown point

Breakdown point of
» mean is 0,
» median is 50%.



Gross error sensitivity

Influence function

IF(x|p,n) = lim (- 8)PZE@) —1(p)

p — probability distribution
N — estimator
8, — dirac function at x



Gross error sensitivity

Influence function

IF(x|p,n) = lim M =€)P+€5) —n(p)

£—0 €

Gross error sensitivity

GES(p. 1) = sup|IF(x)|

p — probability distribution
N — estimator
8, — dirac function at x



How to measure efficiency

How is the sampling distribution of the estimator spread about the
true value?



How to measure efficiency
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Distribution of mean and median estimates from 100 samples from
A(0,1).



Asymptotic relative efficiency

Asymptotic relative efficiency (ARE) is defined as

n o oa %}
ARE(nlaTIva) - V. )
1
where %, % are variances of estimators 1)1, 72 of a parameter u

of probability distribution p.



Example of comparison of efficiency:

Assuming x; are i.i.d samples from N(u, o)
— 2
> Koy = AT x~ A (15

> Med(Xp,) = med{x1,...,Xp, } ~ AN (Hm)



Example of comparison of efficiency:

Assuming x; are i.i.d samples from N(u, o)
— 2
> Koy = AT x~ A (15

> Med(Xp,) = med{x1,...,Xp, } ~ AN (Hm)

» Median and mean estimates are equally precise, iff

n = G§4p2(u)n2

> ARE of median to mean for .47(0,1) is
ARE(Med, X) = 2 = 0.6366.



Plan

Estimators of location



Estimators of location

mean
median
q%-trimmed

q%-winsorized
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Hodges-Lehmann



Mean

{—39.61,—-26.29,—1.07,—0.92,—-0.85,—0.16,0.93,1.91,2.18,133.65}

> mean %Z,-X,- =6.97
» Zero breakdown

» Optimal if samples follows Normal distribution.



Median

{-39.61, -26.29, -1.07, -0.92, -0.85, -0.16, 0.93, 1.91, 2.18, 133.65}

» median median{x,...,x10} = —0.51
» 50% breakdown
» ARE = 0.637 for Normal distribution



q%-trimmed

{-39.61,-26.29,—1.07,—0.92,—0.85, —0.16,0.93,1.91,2.18,133.65}

> calculate mean from samples {x|xg9, < x < X149}
1

> mean WZXE%X; =-041

» q% breakdown

» ARE = 0.943 for Normal distribution



q%-Windsorized

{-1.07,-1.07,—-1.07,—0.92,—0.85,—0.16,0.93,1.91,1.91,1.91}
> replace samples outside (xg9,,Xx;_q%) by bounds, return mean.
> mean %ZXGQZ x; = 0.33
» q% breakdown

» Robust alternative to mean, more dependant on the
distribution then median.



Hodges-Lehman

{—39.61,-26.29, —1.07,—0.92, —0.85, —0.16,0.93,1.91,2.18, 133.65}

> HL = med{xfgxf\i,j e /v} — 0.03
» 0.29 breakdown
» ARE = 0.955 for Normal distribution



Comparison of location estimators

estimator location
mean 6.97
median —0.51
q%-trimmed —0.41
q%-winsorized 0.33
Hodges-Lehmann —0.03




Plan

Estimators of scale



Estimators of scale

» sample standard deviation
» median absolute deviation
> S,
> Q



Sample standard deviation

> (unbiassed) formula: 62 = 1= Y7  (x; — %)?
> (biassed) formula: 62 =1 f’,l(x,-—f()2

» breakdown point 0

» ARE=1 — optimal for Normal distribution

X denotes mean of samples



Median absolute deviation

» formula: MAD = med{|x; — med{x;}|}
» breakdown point 50%

» For Normal distribution

> ARE=0.37
> & =1.4826-MAD



» formula: S, = med;{med;|x; — x;|}
» breakdown point 29%

» For Normal distribution

> ARE=0.86
> 6=1.0483-5,



» sample standard deviation Q = {|x; — x;||i < j}qs
» breakdown point 50%

» For Normal distribution

> ARE=0.82
> §5=22219-Q
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M-estimators



Question

Why mean is so popular?



ML estimate of location of Normal distribution

Assuming x ~ 4 (u,62), then maximum likelihood estimate (ML)
of u from {x1,...,xp} is



ML estimate of location of Normal distribution

Assuming x ~ 4 (u,62), then maximum likelihood estimate (ML)
of u from {xy,...,xp} is
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ML estimate of location of Normal distribution

Assuming x ~ 4 (u,62), then maximum likelihood estimate (ML)
of u from {xy,...,xp} is
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ML estimate of location of Normal distribution

Assuming x ~ 4 (u,62), then maximum likelihood estimate (ML)
of u from {xy,...,xp} is

— ez (xi—p)?
arg max.,? H e 202
\/27w

argmaxlog L = ——Z —logVv2no
u

1



ML estimate of location of Laplace distribution

05— N(O,1) .
—— Laplace(0,1)




ML estimate of location of Laplace distribution

Assuming x ~ Laplace(u, ), then maximum likelihood estimate
(ML) of u from {x1,...,xn} is



ML estimate of location of Laplace distribution

Assuming x ~ Laplace(u, ), then maximum likelihood estimate
(ML) of u from {x1,...,xn} is

arg max,i” H —e albxi—nl



ML estimate of location of Laplace distribution

Assuming x ~ Laplace(u, ), then maximum likelihood estimate
(ML) of u from {x1,...,xn} is

arg max,i’ H—e albxi—nl

1
I 2:——2 ; — | —log2c
arg mix og oL |x;i — u| —log



ML estimate of location of Laplace distribution

Assuming x ~ Laplace(u, ), then maximum likelihood estimate
(ML) of u from {x1,...,xn} is

1 1
N ) T
argm#x i 266
log . —12 | | —log20
arg maxilo = — Xi — — 10
g p g o4 i—H g

0= sentxi—4)



Question

Can we generalize this?



ML estimate of location of exponential class

Assuming x ~ %e‘p(%), then maximum likelihood estimate (ML)
of u from {x1,...,x,} is



ML estimate of location of exponential class

Assuming x ~ %e‘p(%), then maximum likelihood estimate (ML)
of u from {x1,...,x,} is

1 Xi—i
L —T1=erC5)
argmix H Ze



ML estimate of location of exponential class

Assuming x ~ %e‘p(%), then maximum likelihood estimate (ML)
of u from {x1,...,x,} is

1 Xi—i
L —T1=erC5)
argmix H Ze

Xi—H
—logZ
5 ) —log

log & = —
argml?x og ;p(



ML estimate of location of exponential class

Assuming x ~ %e‘p(%), then maximum likelihood estimate (ML)
of u from {x1,...,x,} is

1 Xi—i
L —T1=erC5)
argmix H Ze

Xj — U
I = — - I
argml?x og ¥ E,- p( ) —log Z

0- D5



Normal distribution

_ 1.2
> p=35x
| 2 p’—x

1
> p=Yixi




Laplace distribution

> p =3l
> p’ =sgn(x)
> 0=Y;sen(x — )




Huber loss (not called Huber)

2 x| < a
% x| >a

VI B x| < a
P=Y0 |x>a

1
> u= TQZi|abs(x,-)<aXi
P> trimming




Huber loss (called Huber)

X2
&5 x| <a
>p_{2 2 ||

alx|—% |x[>a
, ] x x| <a
| 2 p =
a-sgn(x) |x|>a
| 2 ‘LL =
% [Zi\abs(x,—)<axi +ns,- a]
» Windsorizing




Hampel loss

0<x<a
a<x<b
b<x<c

c<x

0<x<a
a<x<hb
b<x<c

c<x




Caveats of robust losses

» To use them you need to set a scale — use robust estimate.
» Robust losses might have unfavourable efficiency.
» Sometimes you need to select parameters.

» Hampel loss is not convex — difficult to optimize.
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Robust regression



Least-square regression is an M-estimator

Generative model behind OLS is

y=x"B+e,e~.H(0,06°).

x,y € R9



Least-square regression is an M-estimator

Generative model behind OLS is
y=x"B+e,e~.H(0,06°).

Therefore
p(y|X,ﬁ,62) ~ </V(erﬁ’cyz)

x,y € R9



Least-square regression is an M-estimator

Generative model behind OLS is
y=x"B+e,e~.H(0,06°).

Therefore
p(y|X,ﬁ,62) ~ </V(erﬁ’cyz)

and

B =argmin L0678 )"

x,y € R9



Robust regression

Assume different distribution of noise

y =x B +¢,& ~ Laplace(0, 5).



Robust regression

Assume different distribution of noise
y =x B +¢,& ~ Laplace(0, 5).
and obtain median absolute regression

B= argmlgnZIX;TB —Yil-
i



Robust regression

Replace the mean estimate by robust alternatives
» Huber A: least median of squares (LMS)

B =arg mﬁinmed{(x,-TB —y)?}
» Huber B: least trimmed squares (LTS)

B = sremn Y (75 -l

-(j) represents an order statistics (quantile)



Examples of robust regression

0.6 " [--- correct
°°® 1
—1L1

—— Huber
—— Hampel

0 O.‘Q 0‘.4 O.‘6 0‘.8 1
y =0.1x+.47(0,0.1) without outliers



Examples of robust regression

- - - correct
— L2

1b J|—1L1

—— Huber
—— Hampel

0 0.‘2 0‘.4 0.‘6 0‘.8 1
y =0.1x+.47(0,0.1) with outlier



Examples of robust regression

- - - correct
—1L2
—L1

—— Huber
—— Hampel

0 O.‘5 1 1.5 2
y =0.1x+.47(0,0.1) with outliers
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Measuring (testing) correlation between variables



Pearson's correlation

» Assume pairs of samples {(x;,y;)}"_,

> px.y

Ox Oy

X, y denotes a sample mean

* o.... o ::. . 8|
° o'f .. ° .. LY
° o ;
e B
p = —0.0008



Pearson's correlation

4,
» Assume pairs of samples {(x;,y;)}"_, L.
2 Lil(xi—X)(vi—7)] et -
| 2 Px.y = [(XUX);Y}/ 24 ol o? .:;h e 4
» Breakdown point is zero Pk :.":“
—2[ o .\‘. I
-2 0 2
p =0.3245

X, y denotes a sample mean



Spearman'’s correlation

4,
2,
> Replaces {x;,y;}i by ranks {r*,r’}; «
1 X_E=\(Y_F 0
_ aLil(r=F)(r7 = 1)] Celo o o
> rs = G Ory 0;0 ..z:...’.:
° .:
-2 ' e I I
-2 0 2 4

rs = —0.0008, p = 0.3245

fx, fy denotes a sample mean of ranks



Spearman'’s correlation

b
> Replaces {x;,y;}i by their ranks .
{r< '} *
ot g 0l o
1 x_F\(r _F °
= Xil(rF=R)(r =F ®

> = [( . G)( ) L.
rx Ory .
» Statistic rs g follows Student-t e
-1 7(‘).5 (‘) U.‘5

re=1.0, p=0.98

fx, fy denotes a sample mean of ranks



Kendall correlation

» Kendalls't removes all quantities and | .
uses order R
» Samples are concordant if .
> x; <xjand y; <y o
> x; > x; and y; > y; o*

> rk:é(nc—nd) b,

> T~ N (0,%) -1 05 0 05
re=1.0, rs=1.0, p=0.98



Kendall correlation

» Kendalls't removes all quantities and A .
uses order < L
» Samples are concordant if . et ©oe
> x; <xjand y; <y or vt .t Lt
> x;>xjand y; > y; ,, °
1 e ¢
> rk:m(nc_nd) b et
2 L]
I I L %e I I
> T~ N (0,%) -3 2 -1 0 1 2

re =0.34, rs =0.48, p =0.55
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Non-parametric tests



Sign test

Tests if differences between pairs of observations are consistent.



Sign test

Population of pairs {(x;,yi)};
1. discard samples for which |y; — x;| =0
2. test statistic N
W = Z /(y,- > X,')
i=1

3. under null hypothesis W follows binomial distribution
Bi(N,0.5)

I(-) denotes the indicator function



Wilcoxon-signed rank test

Tests if population of two related (matched) samples have equal
mean rank.



Test hypothesis of Wilcoxon-signed rank test

Difference between pairs follows a symmetric distribution around
zero.



Wilcoxon-signed rank test

Population of pairs {(xi,yi)};
1. calculate |y; — x;| and discard those with |y; — x;| =0
2. rank remaining samples according to |y; — x;|
3. test statistic

N
W= ;[Sgn(yi —x)- Ri]

4. under null hypothesis W has

> zero mean
. N(N+1)(2N+1
> variance o2 = NNVFLENH)

5. For small N critical values are tabulated.

6. For large N with z = %,GW



Discussion of sign and signed-rank test

» Sign test have less assumptions — needs only order
relationship

> Signed rank test have higher power: ARE is 0.67.

» Would differences follows normal distribution, paired t-test is
more appropriate; ARE is 0.95.

» Generalization of a sign test to n-tuples is a Friedman test.



Mann-Whitney U-test

Tests, whether a probability that a value from population X is
greater than a value from population Y (and vice versa) is greater
than 0.5.

Tests, whether the distributions of both populations are equal.



Mann-Whitney U-test

No ok b=

Assume we have {(x;)} ™,

Calculate ranks of all samples together.

Sum ranks of samples from the first population, R;.
Sum ranks of samples from the second population, R».
Calculate U; = Ry — w and U, = Ry — M
U= min{Uy, Uz}

For small ny, ny critical values are tabulated,

niny ninz(nit+na+1)
for large ni,ny U~ JV( L2, SRS
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