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Anomaly detection



Where is anomaly detection used

▶ Security
▶ Fraud detection
▶ Intrusion detection
▶ Airport security

▶ Safety
▶ Monitoring of industrial processes
▶ Detecting disease outbreaks
▶ Detecting environmental hazards



Definition of anomaly

An outlier is an observation which deviates so much from the other
observations as to arouse suspicions that it was generated by a

different mechanism1.

Anomaly detection refers to the problem of finding patterns in data
that do not conform to expected behavior2.

1 D. M. Hawkins, Identification of Outliers, 1980
2 V. Chandola, A. Banerjee, and V. Kumar, Anomaly detection: a survey, 2009



Pros and cons

Anomaly detection
▶ Does not need labelings (sort of).
▶ Need mostly clean datasest.
▶ Can identify unseen samples.
▶ Not all anomalies are interesting (harmful).

Supervised classification
▶ Needs a lot of labels.
▶ Very precise
▶ Provides labels of samples from known classes.
▶ Arbitrary results on unseen samples.
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Problem definition

We are given a set of data points

{xi |xi ∈ R, i ∈ {1, . . . ,n}} .

We want to identify anomalies in or with respect to them .
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Fitting known distribution (Normal)

Set thresholds to
some quantile,
here to 0.0035.
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Tukey method — BoxPlot

Set thresholds to

md(x)±1.5IQR(x)

which corresponds
to 0.0035 quantile
of normal.
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Tukey, John W, Exploratory Data Analysis, 1977



Distribution of round-trip time of packets

The distribution has
three modes
corresponding to rtt
to local, Prague, US
servers.
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Tukey and Normal

Tukey’s method and
method assuming
Normal distribution
fails.
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Approximate the distribution by histogram

How to determine
the threshold?
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Setting the threshold on anomaly

Assume that p is a probability density function and α is desired
false positive rate.
Then x is deemed as an anomaly when p(x)≤ β with

β = argmax
β∈R

∫
X

I[p(x)≤ β ]p(x)dx ≤ α,

where I[·] denotes Iverson brackets evaluating to 1 if the argument
is true and zero otherwise.



Number of bins by Sturge

Sturge’s formula

1+3.222∗ log(n)
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n= 1000 yields to 23 bins.



Histogram — number of bins

Too few bins might
oversmooth.
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Histogram — too many bins might overfit.
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Histogram — number of bins

With a lot of data,
it works great.
100 000 data
points, 1000 bins.
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Kernel density estimate / Parzen window estimate

The idea is that each data point defines a probability distribution,
which results in a mixture.

p(x) =
1
N

n

∑
i=1

h (x−xi |σ) ,

where h is a some probability distribution function.

For example Gaussian distribution h(x |σ) = 1√
2πσ

e−
x2
2σ2 ).

The issue is computational complexity and setting bandwidth σ .



Kernel density estimate / Parzen window estimate

Silverman’s rule set

σ = 0.9∗ σ̂ ∗n−0.2

where

σ̂ =min

(
std(x),

IQR(x)
1.34

)
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B. W. Silverman, "Algorithm AS 176: Kernel Density Estimation Using the Fast
Fourier Transform", 1982



Kernel density estimate / Parzen window estimate

KDE is a probability
density function, set
threholds as for
histograms.
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Summary

▶ Anomaly detection in 1D of unimodal data is "simple".
▶ Multi-modal data are difficult, requiring more flexible models.
▶ We need to know something about the data to get good

results.
▶ Flexible models have hyper-parameters, which needs to be set.
▶ Setting thresholds is principled for models providing pdf.
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Options

Methods based on
▶ likelihood,
▶ distance,
▶ classification,
▶ pseudo-likelihood,
▶ miscelaneous.



Parzen window estimator

Works the same as in 1D, but we need to modify the kernel to work
in higher dimensions.

p(x) =
1
n

n

∑
i=1

h (x−xi |σ) ,

where h is some probability distribution function e.g. Normal.

The performance depends on the choice of kernel and bandwidth
(might be anizotropic).

E. Parzen, On Estimation of a Probability Density Function and Mode, 1962



Parzen window estimator — example



Mixture models

The mixture model is defined as

p(x |θ ,w) =
m

∑
j=1

wjp(x |θj),

where
▶ wj ≥ 0,∑m

j=1wj = 1 are weights,
▶ and p(x |θj) are simple distributions (Normal, Categorical).

The performance depends on the number of components, choice of
distribution, and quality of fit (initialization).



Mixture of multivariate Gaussian distributions



Flow models

▶ Fits a samples to a normal distribution transformed by a
bijection

▶ p(x) = |f −1(x)|pz(f −1(x))

▶ Masked autoregressive models, flow models
▶ Real NVP

y1:d =x1:d

yd+1:D =xd+1:D ⊙ exp(s(x1:d))+ t(x1:d)

https: // lilianweng. github. io/ posts/ 2018-10-13-flow-models/

https://lilianweng.github.io/posts/2018-10-13-flow-models/


Example of normalizing flows
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Do do we have to model density?
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Do not model distribution, focus on decision boundary.



One-class support vector machines

Finds the hyper-plane separating the data from the origin with the
highest margin, allowing at most ν misclassified points.



One-class support vector machines

training:

arg min
w∈Rn,ρ

1
2

n,n

∑
i ,j=1

αiαjk(xi ,xj)−ρ +
1

νN

N

∑
i=1

ξi

subject to

n

∑
j=1

αik(xj ,xi )≥ ρ −ξi , ξi ≥ 0.

prediction:

f (x) =
N

∑
i=1

αjk(xi ,x)−ρ > 0

k(·, ·) is a kernel function, e.g. k(x ,x ′) = e−γ∥x−x ′∥2
.



One-class support vector machines



Density detection as classification
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Classify the normal samples against the baseline measure (noise).



Density detection as classification
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K-nearest neighbor — motivation

Outliers are far from points / they have "empty" neighbourhood.

S. Ramaswamy, R. Rastogi, K. Shim, Efficient algorithms for mining outliers
from large data sets, 2000



K-nearest neighbor — calculation

1. For sample {xi}Ni=1 calculate its distance to k th nearest
neighbor.

2. Return fraction p of samples as outliers.

The performance depends on the choice of distance (e.g Lp),
izotropiness of the space, choice of k.

S. Ramaswamy, R. Rastogi, K. Shim, Efficient algorithms for mining outliers
from large data sets, 2000



K-nearest neighbor — example

S. Ramaswamy, R. Rastogi, K. Shim, Efficient algorithms for mining outliers
from large data sets, 2000



Local outlier factor — motivation

Outliers have low density with respect to its k neighborhood.

M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, Lof: Identifying
density-based local outliers, 2000.



Local outlier factor — calculation

1. For every {xi}Ni=1 estimate the local density, ldk(xi ), as an
inverse of a distance to k nearest neighbor.

2. Compare local density of x with its k nearest neighbors Nk(x),

lof(x) =
1
k ∑

xi∈Nk (x)

ldk(xi )

ldk(x)
.

3. lof(x)≥ 2 indicates outlier

M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, Lof: Identifying
density-based local outliers, 2000.



Local outlier factor — example

M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, Lof: Identifying
density-based local outliers, 2000.



What is great on distance-based methods?

Distance is defined for many types of spaces, for which might not
be easy to defined probability distribution.
▶ strings (edit distance),
▶ sets (Jaccard and Haussdorf distance),
▶ trees (tree edit distance),
▶ multi-sets (partial wasserstein distance),
▶ probability distributions (Total-Variation, Wasserstein

distance),
▶ JSONs (this department).



What is bad on distance-based methods?

They are expensive, as they have both
▶ high computational complexity,
▶ and high storage complexity.
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Principal component analysis

▶ Assumes the data are located on a hyperplane.
▶ Finds projection P of the data on the hyperplane explaining

most variance.
▶ Computes the reconstruction error as

∥xTPPT −x∥2

▶ Data points with low reconstruction error are located on the
hyperplane and therefore considered normal.

▶ Data points with high reconstruction error are considered
outliers.



Principal component analysis



(Variational) autoencoder

▶ Recall PCA method’s reconstruction error

∥xTPPT −x∥2

▶ View P as an encoder enc(x) and PT as a decoder dec(x).
▶ Then the reconstruction error is ∥dec(enc(x))−x∥2.

▶ enc(x) and dec(x) are some functions (neural networks)
▶ Variational autoencoder adds regularization on latent

DKL(enc(x)∥N(0, I ))



Variation autoencoder



Variational autoencoder
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Isolation Forest — motivation

▶ Create a random tree by randomly selecting feature and
splitting point, but alway separate at least one data-point.

▶ Anomalous points are close to the root of the tree.

F. T. Liu, K. M. Ting, Z. H. Zhou, Isolation Forest, 2008



Isolation Forest — Example



Isolation Forest — calculation

The anomaly score a sample x is defined as

s(x) = 2−
E(h(x))
c(n) ,

where
▶ h(x) is depth of list containing x

▶ c(n) is the average path length of unsuccessful search in
binary search tree with n items

c(n) = 2H(n−1)−2
n−1
n

▶ H(i)≈ ln(i)+0.5772156649



Generative adversarial networks



Generative adversarial networks
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Why we have so many methods?

Lower average rank is better.



Is anomaly detection useful in practice?

▶ Pure anomaly detection is a myth.
▶ You need little bit of labels to set hyper-parameters.
▶ Basic methods frequently works great.
▶ You need to manually label data.
▶ Work in tandem with supervised learning.
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