Warning
This page is located in archive. Go to the latest version of this course pages. Go the latest version of this page.

Lectures

Supporting materials for the lectures of the academic year 2021/2022. The materials are slides, also available in printer-safe version as handouts with 2×2 and 3×3 slides on a single page.

These supportive materials are not intended as a replacement for your own notes from the lectures. They are rather provided to help you to understand the studied problems.

#TWeek Week Monday (Room No. KN:E-107) 11:00-12:30
#1 38. Lecture 01 - Course information, introduction to robotics 20.09. - lec01
#2 39. Lecture 02 - Robotic paradigms and control architectures 27.09. - lec02
#3 40. Lecture 03 - Path planning - grid and graph-based path planning methods 04.10. - lec03
#4 41. Lecture 04 - Robotic information gathering - Mobile robot exploration 11.10. - lec04
#5 42. Lecture 05 - Multi-goal path planning 18.10. - lec05
#6 43. Lecture 06 - Data collection planning 25.10. - lec06
#7 44. Lecture 07 - Curvature-constrained data collection planning 01.11. - lec07
#8 45. Lecture 08 - Randomized sampling-based motion planning methods 08.11. - lec08
#9 46. Lecture 09 - Pursuit-evasion games 15.11. - lec09
#10 47. Lecture 10 - Patrolling games 22.11. - lec10
#11 48. Lecture 11 - Temporal task-motion planning 29.11. - lec11
#12 49. Lecture 12 - Autonomous Navigation with Environment Changes Understanding 06.12. - lec12
#13 50. Lecture 13 - Multi-Agent Pathfinding (MAPF) and Multi-robot Motion Planning 13.12. - lec13
51. 21.12. - Winter holidays (20.12. - 2.1.)
52. 28.12. - Winter holidays (20.12. - 2.1.)
#14 01. Exam Test (reserve) 03.01. -
8.1.2022 @ 23.59 CEST - Ungraded Assessment Deadline!

1. Course information, introduction to robotics

Jan Faigl 2021/09/20 23:13

2. Robotic paradigms and control architectures

Jan Faigl 2021/09/13 05:06

3. Path planning - Grid and graph-based path planning methods

Jan Faigl 2021/10/04 10:38

4. Robotic information gathering - Mobile robot exploration

Jan Faigl 2019/10/14 13:50 Update: Comments on Hungarian algorithm and dummy tasks and resources. Further comments on the relation of the decision-making and particular realization of the whole navigation stack.

Jan Faigl 2021/10/10 21:49

5. Multi-goal path planning

Jan Faigl 2021/10/18 12:51

6. Data collection planning

Jan Faigl 2021/09/13 05:06

7. Curvature-constrained data collection planning

Jan Faigl 2021/11/01 12:52

8. Randomized sampling-based motion planning methods

Jan Faigl 2021/11/08 10:49

9. Pursuit-evasion games

10. Patrolling games

11. Temporal task-motion planning

12. Autonomous Navigation with Environment Changes Understanding

13. Multi-Agent Pathfinding (MAPF) and Multi-robot Motion Planning

Topics of Invited Talks

AA. Autonomous navigation


Slides

References
  1. Bonin-Font, Francisco, Alberto Ortiz, and Gabriel Oliver. Visual navigation for mobile robots: A survey. Journal of intelligent and robotic systems 53.3 (2008): 263-296. pdf
  2. Rodney Brooks. Intelligence without representation. Artificial Intelligence 91 pdf
  3. Filliat, David, and Jean-Arcady Meyer. Map-based navigation in mobile robots:: I. a review of localization strategies. Cognitive Systems Research 4.4 (2003): 243-282. pdf
  4. Tomáš Krajník, Filip Majer et al. Navigation without localisation: reliable teach and repeat based on the convergence theorem. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018. pdf

BB. Simultanneous Localisation and Mapping


Slides

References
  1. Stachniss, Cyrill: Introduction to Robot Mapping video
  2. Cadena et al.: Past, Present and Future of SLAM: Towards the Robust-Perception Age. IEEE T-RO 2018. pdf
  3. Grissetti et al.: Tutorial on Graph-Based SLAM. ITS Magazine pdf

CC. Long-term navigation and spatio-temporal mapping


Slides
References
  1. Krajnik et al. CHRONOROBOTICS: Representing the structure of time for service robots In IJCRAI 2019. pdf
  2. Kunze et al. Artificial Intelligence for Long-term Autonomy: a survey. IEEE RA-L 19. pdf
  3. Krajnik et al. Image Features for Visual T\&R Navigation in Changing Environments. RASS 17. pdf
  4. Halodova et al. Predictive and adaptive maps for long-term visual navigation. In IROS 19. pdf
  5. Krajnik et al. FreMEn: Frequency map enhancement for long-term mobile robot autonomy in changing environments.IEEE T-RO 2017. pdf
  6. Krajnik et al. Warped Hypertime Representations for Long-termAutonomy of Mobile Robots IEEE RA-L 2019.pdf

Tomáš Krajník 2020/01/13 13:28

DD. Multi-robot systems

Jan Faigl 2021/01/03 21:05

courses/uir/lectures/start.txt · Last modified: 2021/12/07 21:50 by faiglj