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Pursuit-Evasion in Mobile Robotics

One or more pursuers try to capture one

or more evaders who try to avoid capture.

• The study of motion planning problems in adversarial settings

• Detecting intruders
• Playing hide-and-seek
• Catching burglars

• The planner seeks an optimal strategy against the worst-case adversary
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Classes of Pursuit-Evasion Games

Differential

• Hamilton-Jacobi-Isaacs differential

equations model the dynamics

• Their solutions are players’ strategies

as control inputs for achieving

the objectives

� Velocity or acceleration are

expressed explicitly as differential

constraints

� The resulting equations are very

complicated and difficult to solve

Combinatorial

• A real environment is modeled
as a polygon or graph

• The Cops and Robbers Game
• Parson’s game
• The lion-and-man game

� Complexity results and guarantees

in terms of the size of game

� Abstraction from the continuous

features of environment
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Lecture Goals/Outline

To understand how

� the robotic motion planning changes in the presence

of an adversary pursuing their own goals and

� the robot’s navigation can be enhanced using

the game-theoretic methods in this case.

1 Motivation: A simple path planning problem

2 The robust path planning problem as a two-player zero-sum game

3 Dynamics of pursuers/evaders can be modeled as a stochastic game
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Robust Path Planning Problem



What Path Should the Robot Follow to

Avoid CCTV?

� The position of cameras is known
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What Path Should the Robot Follow to

Avoid CCTV?

� The position of cameras is known

The planner navigates a robot to a goal location in

a previously mapped environment. The adversary is

a part of the environment!

Planner

• Models the problem as a single-agent

Markov decision process

• Must find a path minimizing the robot’s

visibility to cameras

Adversary

• Places cameras to detect the robot

• Has no strategic goals
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What Path Should the Robot Follow to

Avoid CCTV?

� What are optimal camera locations?
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What Path Should the Robot Follow to

Avoid CCTV?

� What are optimal camera locations?

Both the planner and adversary can control the environment actively.

Planner

• Path π for the robot

• Finite set of pathsΠ

• Probability distribution p ∈ ∆Π

Adversary

• Cost vector c
• Finite set of cost vectors C

• Probability distribution q ∈ ∆C

Let V(π, c) be the value of policy π and cost vector c. Solve:

min
p∈∆Π

max
q∈∆C

∑
π∈Π

∑
c∈C

p(π)q(c)V(π, c)
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Example of Solution Blum et al. (2003)
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Planning Paths: Experiments Blum et al. (2003)

• The gridworld of size up to 269× 226

• The robot can move in any of 16 compas directions

• Each cell has cost 1 and a cost proportional to the distance of camera

Computational limits

� SetsΠ and C should be reasonably small

� Already
(
100
2

)
= 4950 positions exist for 2 cameras in the gridworld 10× 10
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Two-Player Zero-Sum Games



Two-Player Zero-Sum Game

1 Players/agents are the planner and the adversary

2 Strategy sets are M and N

3 The matrix C = [cij]i∈M, j∈N of costs for the planner

For example:

|M| = 2, |N| = 4, C =

[
1 0 4 −1
−1 1   − 2  5

]
The zero-sum assumption means

the loss of 4 for the planner= the gain of 4 for the adversary.
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Minmax/Maxmin Strategies � We seek the optimal performance

against the worst-case adversary

• Assume that the agents adopt maxmin/minmax strategies ī ∈ M and j̄ ∈ N:

ī = 1, j̄ = 2, C =

[
1 0 4 −1
−1 1   − 2  5

]
• The floor on the profit of adversary (0)≤ the ceiling of the cost of planner (4):

max
j∈N

min
i∈M

cij ≤ c̄i j̄ ≤ min
i∈M

max
j∈N

cij

• However, the adversary can increase the profit by playing j = 3

• In this case the planner would adopt i = 2

• Then the adversary would play j = 4 etc.
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Mixed Strategies � Randomize!

A mixed strategy of a player is a probability distribution over the strategy set.

• Let∆M and∆N be the sets of mixed strategies of planner/adversary

• If the agents play x ∈ ∆M and y ∈ ∆N, the expected loss of planner is∑
i∈M

∑
j∈N

xiyjcij = xᵀCy

In particular, if the adversary uses a pure strategy ej ∈ ∆N with j ∈ N,∑
i∈M

xicij = xᵀCej
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Minmax/Maxmin in Mixed Strategies

1 A minmax strategy of the planner is a mixed strategy x̄ ∈ ∆M such that

max
y∈∆N

x̄ᵀCy = min
x∈∆M

max
y∈∆N

xᵀCy

2 A maxmin strategy of the adversary is a mixed strategy ȳ ∈ ∆N such that

min
x∈∆M

xᵀCȳ = max
y∈∆N

min
x∈∆M

xᵀCy

It is easy to show that max
y∈∆N

min
x∈∆M

xᵀCy︸ ︷︷ ︸
The lower bound on the profit

≤ x̄ᵀCȳ ≤ min
x∈∆M

max
y∈∆N

xᵀCy︸ ︷︷ ︸
The upper bound on the cost
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Minimax Theorem � von Neumann, 1928

min
x∈∆M

max
y∈∆N

xᵀCy︸ ︷︷ ︸
The value of the game

= max
y∈∆N

min
x∈∆M

xᵀCy

� An equilibrium is a pair of minmax/maxmin strategies (x̄, ȳ)
� For any equilibrium (x̄, ȳ), we obtain

x̄ᵀCȳ = the value of the game
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Computing Minmax Strategy � Linear programming

We can write

min
x∈∆M

max
y∈∆N

xᵀCy = min
x∈∆M

max
j∈N

xᵀCej.

This minmax problem is equivalent to a linear program:

Minimize max
j∈N

xᵀCej

subject to x ∈ ∆M

Minimize v

subject to xᵀCej ≤ v, ∀j ∈ N

xi ≥ 0, ∀i ∈ M∑
i∈M

xi = 1

v ∈ R

Two-Player Zero-Sum Games 18



Computing Minmax Strategy � Example

C =

[
1 0 4 −1
−1 1   − 2  5

]
Minimize v

subject to x1 − x2 ≤ v

x2 ≤ v

4x1 − 2x2   ≤ v

− x1 + 5x2 ≤ v

x1, x2 ≥ 0

x1 + x2 = 1

v ∈ R

The equilibrium strategies are x̄ = ( 7
12 ,

5
12), ȳ = (0, 0, 12 ,

1
2), and v̄ = 3

2 .
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Computing Equilibrium � Problems

� The strategy sets M and N are too large in the path planning problems

� The cost matrix C may not be explicitly given

We show an iterative method relying on 2 principles:

1 Small subgames can be solved efficiently

2 Subgames are expanded with best responses

The best response of planner to a mixed strategy y ∈ ∆N is i ∈ M minimizing eᵀi Cy.
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Double Oracle Algorithm Blum et al. (2003)

1 Pick initial subsets of strategies for each player

2 Compute an equilibrium of the subgame MASTER PROBLEM

3 Expand the current strategy sets with the best responses SUB-PROBLEM

4 Repeat 2. and 3. until the current equilibrium is good enough
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Double Oracle Algorithm Initialize

Initialize with random pure strategies.
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Double Oracle Algorithm Master Problem

Find an equilibrium of the 1× 1
subgame.
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Double Oracle Algorithm Master Problem

Find an equilibrium of the 1× 1
subgame.
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Double Oracle Algorithm Best Response (adversary)

Find adversary’s best response

against a fixed strategy of the planner.

100 %

Best response

5 10 15 20

5

10

15

20

Two-Player Zero-Sum Games 25



Double Oracle Algorithm Best Response (planner)

Find planner’s best response against

a fixed strategy of the adversary.
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Double Oracle Algorithm Master Problem (Iteration 2)

Find an equilibrium of the 2× 2
subgame.
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Double Oracle Algorithm Master Problem (Iteration 2)

Find an equilibrium of the 2× 2
subgame.
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Double Oracle Algorithm � Properties

� The algorithm recovers an exact equilibrium in finitely many steps

� The approximation of equilibrium/value of the game

� Easy to implement using efficient LP solvers

� It may need O(|M|+ |N|) iterations
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Stochastic Games



Repeating Zero-Sum Games � Or making MDPs competitive?

P

E1

E2

• The pursuer P tries to capture

evaders E1 and E2

• Stochastic policy describes the mixed

strategy of each player in every state

• We are seeking a common
generalization of

• two-person zero-sum games and
• Markov decision processes (MDPs)
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Stochastic Game � Two-Player Zero-Sum

1 The planner and the adversary

2 Strategy sets M and N

3 The set S of states

4 The transition function

T : S × M × N → ∆S

where T(s, i, j) denotes the probability distribution on S

5 The reward function

R : S × M × N → R

where R(s, i, j) is the reward to the planner
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Policy � Special cases

A policy of the planner is a mapping

π : S → ∆M

from states to mixed strategies,

and analogously for the adversary.

� If |S| = 1, then we obtain

a two-person zero-sum game

and the concept of mixed strategy

� If |N| = 1, then we get an MDP with

the concept of stochastic policy

How to evaluate policies?
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Discounting � How much future rewards effect

optimal decisions?

• The policies of the planner and adversary determine a random reward Rt+k

received k steps into the future at time t

• A discount factor is a number 0 ≤ γ < 1

• The goal of planner is to maximize the expected discounted reward at time t,

E

[ ∞∑
k=0

γkRt+k

]
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Value/Quality Function

• Let V(s) be the expected reward for the optimal policy from state s ∈ S

• LetQ(s, i, j) be the expected reward for action i ∈ M from state s ∈ S when

1 the adversary selects strategy j ∈ M and

2 the planner continues optimally thereafter

Q(s, i, j) = R(s, i, j) + γ
∑
s′∈S

T(s, i, j)(s′) · V(s′)

V(s) = max
πs∈∆M

min
j∈N

∑
i∈M

Q(s, i, j) · πs(i)
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Value Iteration � A variant for stochastic games

Q(s, i, j) := R(s, i, j) + γ
∑
s′∈S

T(s, i, j)(s′) · V(s′) (1)

V(s) := max
πs∈∆M

min
j∈N

∑
i∈M

Q(s, i, j) · πs(i) (2)

• Start with an estimate of value function V
• Update (1)–(2) iteratively

• This procedure converges to the optimal values (Shapley, 1953)
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