CourseWare Wiki
Switch Term
Winter 2024 / 2025
Winter 2023 / 2024
Winter 2022 / 2023
Winter 2021 / 2022
Winter 2020 / 2021
Winter 2019 / 2020
Winter 2018 / 2019
Older
Search
Log In
b211
courses
be4m33ssu
lectures
Warning
This page is located in archive. Go to the latest version of this
course pages
. Go the latest version of
this page
.
Syllabus
Lecture
Date
Topic
Lecturer
Pdf
Notes
1.
21. 9.
Introduction
BF
2.
28. 9.
— National holiday —
3.
5. 10.
Empirical risk
VF
(to print
)
[1] Chap 2, [2] Chap 7
4.
12. 10.
Empirical risk minimization
VF
(to print
)
[1] Chap 2, [2] Chap 7
5.
19. 10.
Empirical risk minimization II
VF
(to print
)
[1] Chap 4, [2] Chap 12
6.
26. 10.
Structured Output Support Vector Machines
VF
(to print
)
[1] Chap 5, [2] Chap 12
7.
2. 11.
Supervised learning for deep networks
JD
8.
9. 11.
SGD, Deep (convolutional) networks
JD
SGD
Deep networks
9.
16. 11.
Generative learning, Maximum Likelihood estimator
BF
10.
23. 11.
EM algorithm, Bayesian learning
BF
takes place in KN:A-214
11.
30. 11.
Hidden Markov Models
BF
12.
7. 12.
Markov Random Fields
BF
Contents of this lecture are not examined
13.
14. 12.
Ensembling I
JD
[4]
14.
4. 1.
Ensembling II
JD
[2] Chap 10
courses/be4m33ssu/lectures.txt
· Last modified: 2022/01/04 10:42 by
drchajan