Statistical Machine Learning (BE4M33SSU) Lecture 10: Hidden Markov Models

Czech Technical University in Prague

- Markov Models and Hidden Markov Models
- Inference algorithms for HMMs
- Parameter learning for HMMs

1. Structured hidden states

Models discussed so far: mainly classifiers predicting a categorical (class) variable $y \in \mathcal{Y}$

Often in applications: the hidden state y is a structured variable.

Here: the hidden state y is given by a **sequence** of categorical variables.

Application examples:

- text recognition (printed, handwritten, "in the wild"),
- speech recognition (single word recognition, continuous speech recognition, translation),
- robot self localisation.

Markov Models and Hidden Markov Models on chains:

a class of generative probabilistic models for sequences of features and sequences of categorical variables.

2. Markov Models

Let $s = (s_1, s_2, ..., s_n)$ denote a sequence of length n with elements from a finite set K. Any joint probability distribution on K^n can be written as

$$p(s_1, s_2, \dots, s_n) = p(s_1) p(s_2 | s_1) p(s_3 | s_2, s_1) \cdots p(s_n | s_1, \dots, s_{n-1})$$

Definition 1. A joint p.d. on K^n is a Markov model if

$$p(\mathbf{s}) = p(s_1) p(s_2 | s_1) p(s_3 | s_2) \cdots p(s_n | s_{n-1}) = p(s_1) \prod_{i=2}^n p(s_i | s_{i-1})$$

holds for any $\boldsymbol{s} = (s_1, s_2, \dots, s_n)$.

2. Markov Models

Example 1 (Random walk on a graph).

- Let (V,E) be a directed graph. A random walk in (V,E) is described by a sequence s = (s₁,...,s_t,...) of visited nodes, i.e. s_t ∈ V.
- The walker starts in node $i \in V$ with probability $p(s_1 = i)$.
- The edges of the graph are weighted by $w: E \to \mathbb{R}_+$, s.t.

j

$$\sum_{i: (i,j) \in E} w_{ij} = 1 \quad \forall i \in V$$

• In the current position $s_t = i$, the walker randomly chooses an outgoing edge with probability given by the weights and moves along this edge, i.e.

$$p(s_{t+1} = j \,|\, s_t = i) = \begin{cases} w_{ij} & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$

Questions: How does the distribution $p(s_t)$ behave? Does it converge to some fix-point distribution for $t \to \infty$?

3. Algorithms: Computing the most probable sequence

How to compute the most probable sequence $s^* \in \underset{s \in K^n}{\operatorname{arg max}} \left[p(s_1) \prod_{i=2}^n p(s_i | s_{i-1}) \right]$?

Take the logarithm of p(s): $s^* \in \underset{s \in K^n}{\operatorname{arg max}} \left[g_1(s_1) + \sum_{i=2}^n g_i(s_{i-1}, s_i) \right]$

and apply dynamic programming: Set $\phi_1(s_1) \equiv g_1(s_1)$ and compute

$$\phi_i(s_i) = \max_{s_{i-1} \in K} [\phi_{i-1}(s_{i-1}) + g_i(s_{i-1}, s_i)].$$

Finally, find $s_n^* \in \operatorname{arg\,max}_{s_n \in K} \phi_n(s_n)$ and back-track the solution. This corresponds to searching the best path in the graph

3. Algorithms: Computing marginal probabilities

How to compute marginal probabilities for the sequence element s_j in position j

$$p(s_j) = \sum_{s_1 \in K} \cdots \sum_{s_j \in K} \cdots \sum_{s_n \in K} p(s_1) \prod_{i=2}^n p(s_i | s_{i-1})$$

Summation over the trailing variables is easily done because:

$$\sum_{s_n \in K} p(s_1) \cdots p(s_{n-1} | s_{n-2}) \, p(s_n | s_{n-1}) = p(s_1) \cdots p(s_{n-1} | s_{n-2})$$

The summation over the leading variables is done dynamically: Begin with $p(s_1)$ and compute

$$p(s_i) = \sum_{s_{i-1} \in K} p(s_i | s_{i-1}) \, p(s_{i-1})$$

3. Algorithms: Computing marginal probabilities

This computation is equivalent to a matrix vector multiplication: Consider the values $p(s_i = k | s_{i-1} = k')$ as elements of a matrix $P_{k'k}(i)$ and the values of $p(s_i = k)$ as elements of a vector π_i . Then the computation above reads as $\pi_i = \pi_{i-1}P(i)$.

Remark 1.

- A Markov model is called homogeneous if the transition probabilities $p(s_i = k | s_{i-1} = k')$ do not depend on the position *i* in the sequence. In this case the formula $\pi_i = \pi_1 P^{i-1}$ holds for the computation of the marginal probabilities.
- Notice that the preferred direction (from first to last) in the Def. 1 of a Markov model is only apparent. By computing the marginal probabilities p(s_i) and by using p(s_i | s_{i-1})p(s_{i-1}) = p(s_{i-1}, s_i) = p(s_{i-1} | s_i)p(s_i), we can rewrite the model in reverse order.

3. Algorithms: Learning a Markov model

Suppose we are given i.i.d. training data $\mathcal{T}^m = \{s^j \in K^n | j = 1, ..., m\}$ and want to estimate the parameters of the Markov model by the maximum likelihood estimate. This is very easy:

• Denote by $\alpha(s_{i-1} = \ell, s_i = k)$ the fraction of sequences in \mathcal{T}^m for which $s_{i-1} = \ell$ and $s_i = k$.

The estimates for the conditional probabilities are then given by

$$p(s_i = k \,|\, s_{i-1} = \ell) = \frac{\alpha(s_{i-1} = \ell, s_i = k)}{\sum_k \alpha(s_{i-1} = \ell, s_i = k)}.$$

Proof (idea):

Consider all terms in the log-likelihood that depend on the transition probability from $(i-1) \rightarrow i$ and rewrite them using frequency counts $\alpha(s_{i-1} = \ell, s_i = k)$

$$\frac{1}{m} \sum_{s \in \mathcal{T}^m} \log p(s_i \,|\, s_{i-1}) = \frac{1}{m} \sum_{k,\ell \in K} \alpha(s_{i-1} = \ell, s_i = k) \log p(s_i = k \,|\, s_{i-1} = \ell)$$

Maximise this w.r.t. $p(s_i | s_{i-1})$ under the constraint $\sum_{s_i \in K} p(s_i | s_{i-1}) = 1$.

4. Hidden Markov Models

• Let $s = (s_1, s_2, \dots, s_n)$ denote a sequence of hidden states from a finite set K.

• Let $\boldsymbol{x} = (x_1, x_2, \dots, x_n)$ denote a sequence of features from some feature space \mathcal{X} .

Definition 2. A joint p.d. on $\mathcal{X}^n \times K^n$ is a Hidden Markov model if

(a) the prior p.d. p(s) for the sequences of hidden states is a Markov model, and

(b) the conditional distribution $p(\boldsymbol{x} | \boldsymbol{s})$ for the feature sequence is independent, i.e.

$$p(\boldsymbol{x} \,|\, \boldsymbol{s}) = \prod_{i=1}^{n} p(x_i \,|\, s_i).$$

Example 2 (Text recognition, OCR).

- $\boldsymbol{x} = (x_1, x_2, \dots, x_n)$ sequence of images with characters,
- $s = (s_1, s_2, \dots, s_n)$ sequence of alphabetic characters,
- $p(s_i | s_{i-1})$ language model,
- $p(x_i | s_i)$ appearance model for characters.

4. Hidden Markov Models

5. Algorithms for HMMs

(1) Find the most probable sequence of hidden states given the sequence of features:

$$s^* \in \underset{s \in K^n}{\operatorname{arg\,max}} p(s_1) \prod_{i=2}^n p(s_i | s_{i-1}) \prod_{i=1}^n p(x_i | s_i)$$

Take the logarithm, redefine the g-s and apply dynamic programming as before for Markov models.

(2) Compute marginal probabilities for hidden states given the sequence of features:

This is now more complicated, because we need to sum over the leading and trailing hidden state variables. Do this by dynamic matrix-vector multiplication from the left and from the right. Initialise $\phi_1(s_1) = p(s_1)p(x_1 | s_1)$ and $\psi_n(s_n) \equiv 1$ and compute

$$\phi_i(s_i) = \sum_{s_{i-1} \in K} p(x_i | s_i) \, p(s_i | s_{i-1}) \, \phi_{i-1}(s_{i-1})$$

$$\psi_i(s_i) = \sum_{s_{i+1} \in K} p(x_{i+1} | s_{i+1}) \, p(s_{i+1} | s_i) \, \psi_{i+1}(s_{i+1})$$

5. Algorithms for HMMs

The (posterior) marginal probabilities are then obtained from

 $p(s_i | \boldsymbol{x}) \sim \phi_i(s_i) \psi_i(s_i)$

12/12

The computational complexity is $\mathcal{O}(nK^2)$.

(3) Learning the model parameters from training data:

Given i.i.d. training data $\mathcal{T}^m = \{(x^j, s^j) \in \mathcal{X}^n \times K^n | j = 1, \dots, m\}$, estimate the parameters of the HMM by the maximum likelihood estimator.

This is done by simple "counting" as before for Markov models.

Remark 2. This is easy to generalise for the case that $\mathcal{X} = \mathbb{R}^m$ and $p(x_i | s_i)$ is from some parametric distribution family.

Remark 3. Learning HMMs by empirical risk minimisation has been discussed in Lecture 5. (Structured output SVMs).