Statistical Machine Learning (BE4M33SSU) Lecture 4: Empirical Risk Minimization II

Czech Technical University in Prague V. Franc

BE4M33SSU – Statistical Machine Learning, Winter 2021

Linear classifier minimizing classification error

- \mathcal{X} is a set of observations and $\mathcal{Y} = \{+1, -1\}$ a set of hidden labels
- $igoplus \phi \colon \mathcal{X} o \mathbb{R}^n$ is fixed feature map embedding \mathcal{X} to \mathbb{R}^n
- Task: find linear classification strategy $h \colon \mathcal{X} \to \mathcal{Y}$

$$h(x; \boldsymbol{w}, b) = \operatorname{sign}(\langle \boldsymbol{w}, \boldsymbol{\phi}(x) \rangle + b) = \begin{cases} +1 & \text{if } \langle \boldsymbol{w}, \boldsymbol{\phi}(x) \rangle + b \ge 0\\ -1 & \text{if } \langle \boldsymbol{w}, \boldsymbol{\phi}(x) \rangle + b < 0 \end{cases}$$

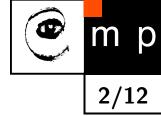
with minimal expected risk

$$R^{0/1}(h) = \mathbb{E}_{(x,y)\sim p} \Big(\ell^{0/1}(y,h(x)) \Big) \quad \text{where} \quad \ell^{0/1}(y,y') = [y \neq y']$$

We are given a set of training examples

$$\mathcal{T}^m = \{ (x^i, y^i) \in (\mathcal{X} \times \mathcal{Y}) \mid i = 1, \dots, m \}$$

drawn from i.i.d. with the distribution p(x, y).



ERM learning for linear classifiers

The Empirical Risk Minimization principle leads to solving

$$(\boldsymbol{w}^*, b^*) \in \operatorname{Argmin}_{(\boldsymbol{w}, b) \in (\mathbb{R}^n \times \mathbb{R})} R^{0/1}_{\mathcal{T}^m}(h(\cdot; \boldsymbol{w}, b))$$

where the empirical risk is

$$R_{\mathcal{T}^m}^{0/1}(h(\cdot; \boldsymbol{w}, b)) = \frac{1}{m} \sum_{i=1}^m [y^i \neq h(x^i; \boldsymbol{w}, b)]$$

- Algorithmic issues (next lecture): in general, there is no known algorithm solving the task (1) in time polynomial in m.
- The uniform bound on the generalization error (this lecture):

$$\mathbb{P}\left(\sup_{h\in\mathcal{H}}\left|R^{0/1}(h)-R^{0/1}_{\mathcal{T}^m}(h)\right|\geq\varepsilon\right)\leq B(m,\mathcal{H},\varepsilon)$$

(1)

Vapnik-Chervonenkis (VC) dimension

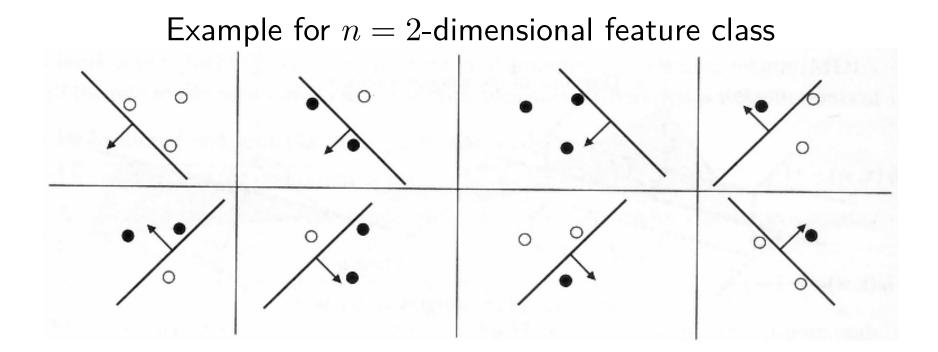
Definition: Let $\mathcal{H} \subseteq \{-1, +1\}^{\mathcal{X}}$ and $\{x^1, \ldots, x^m\} \in \mathcal{X}^m$ be a set of m input observations. The set $\{x^1, \ldots, x^m\}$ is said to be shattered by \mathcal{H} if for all $\mathbf{y} \in \{+1, -1\}^m$ there exists $h \in \mathcal{H}$ such that $h(x^i) = y^i$, $i \in \{1, \ldots, m\}$.

Definition: Let $\mathcal{H} \subseteq \{-1, +1\}^{\mathcal{X}}$. The Vapnik-Chervonenkis dimension of \mathcal{H} is the cardinality of the largest set of points from \mathcal{X} which can be shattered by \mathcal{H} .

VC dimension of class of two-class linear classifiers

(2) m p 5/12

Theorem: The VC-dimension of the hypothesis class of all two-class linear classifiers operating in *n*-dimensional feature space $\mathcal{H} = \{h(x; \boldsymbol{w}, b) = \operatorname{sign}(\langle \boldsymbol{w}, \boldsymbol{\phi}(x) \rangle + b) \mid (\boldsymbol{w}, b) \in (\mathbb{R}^n \times \mathbb{R})\}$ is n + 1.

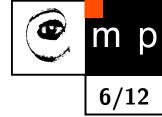


ULLN for two class predictors and 0/1-loss

Theorem: Let $\mathcal{H} \subseteq \{+1, -1\}^{\mathcal{X}}$ be a hypothesis class with VC dimension $d < \infty$ and $\mathcal{T}^m = \{(x^1, y^1), \dots, (x^m, y^m)\} \in (\mathcal{X} \times \mathcal{Y})^m$ a training set draw from i.i.d. rand vars with distribution p(x, y). Then, for any $\varepsilon > 0$ it holds

$$\mathbb{P}\left(\sup_{h\in\mathcal{H}}\left|R^{0/1}(h) - R^{0/1}_{\mathcal{T}^m}(h)\right| \ge \varepsilon\right) \le 4\left(\frac{2\,e\,m}{d}\right)^d e^{-\frac{m\,\varepsilon^2}{8}}$$

Corollary: Let $\mathcal{H} \subseteq \{+1, -1\}^{\mathcal{X}}$ be a hypothesis class with VC dimension $d < \infty$. Then ULLN applies.



Summary: uniform bounds on the generalization error

- We learned how to bound the generalization error uniformly for:
 - Finite hypothesis class $\mathcal{H} = \{h_1, \dots, h_K\}$:

$$\mathbb{P}\Big(\max_{h\in\mathcal{H}}|R_{\mathcal{T}^m}(h)-R(h)|\geq\varepsilon\Big)\leq 2|\mathcal{H}|e^{-\frac{2m\varepsilon^2}{(b-a)^2}}$$

• Two-class classifiers $\mathcal{H} \subseteq \{+1, -1\}^{\mathcal{X}}$ a finite VC-dimensions d:

$$\mathbb{P}\left(\sup_{h\in\mathcal{H}}\left|R^{0/1}(h) - R^{0/1}_{\mathcal{T}^m}(h)\right| \ge \varepsilon\right) \le 4\left(\frac{2\,e\,m}{d}\right)^d e^{-\frac{m\,\varepsilon^2}{8}}$$

In both cases the bound goes to zero, i.e., ULLN applies.

• Does ERM algorithm $h_m \in \operatorname{Argmin}_{h \in \mathcal{H}} R_{\mathcal{T}^m}(h)$ finds strategy with the minimal risk R(h)?

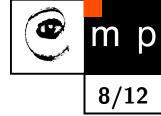
Statistically consistent learning algorithm

- $h_{\mathcal{H}} \in \operatorname{Argmin}_{h \in \mathcal{H}} R(h)$ the best strategy in \mathcal{H} has the risk $R(h_{\mathcal{H}})$
- $h_m = A(\mathcal{T}_m)$ strategy learned from \mathcal{T}_m with has risk $R(h_m)$
- $R(h_m) R(h_H)$ is the estimation error
- The statistically consistent algorithm can make the estimation error arbitrarily small if it has enough examples.

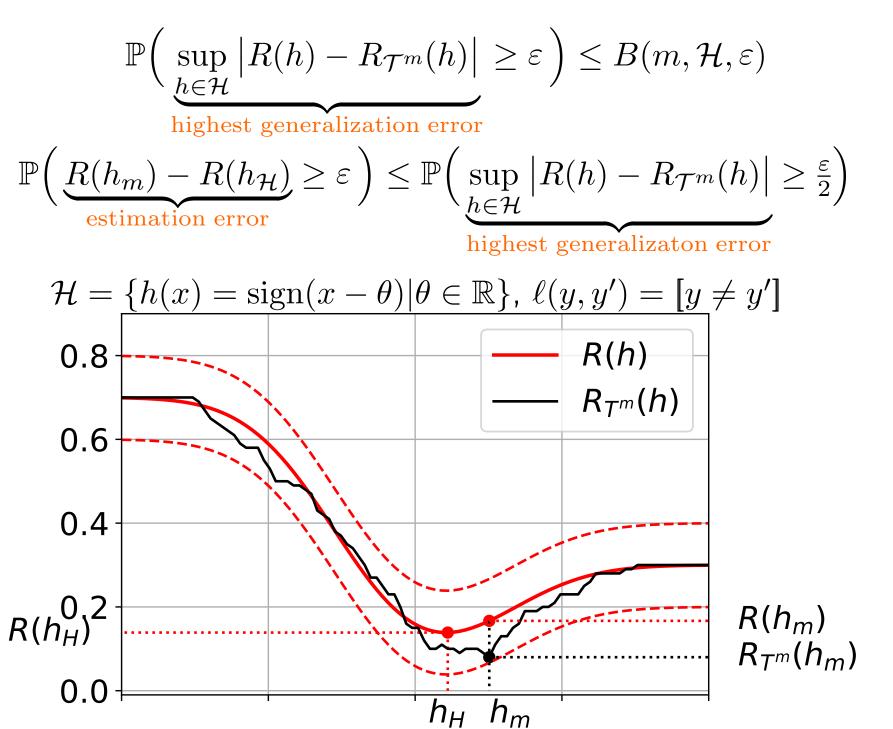
Definition: The algorithm $A: \cup_{m=1}^{\infty} (\mathcal{X} \times \mathcal{Y})^m \to \mathcal{H}$ is statistically consistent in $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$ if for any p(x, y) it holds that

$$\forall \varepsilon > 0: \lim_{m \to \infty} \mathbb{P}\left(\underbrace{R(h_m) - R(h_{\mathcal{H}}) \ge \varepsilon}_{\text{high estimation error}}\right) = 0$$

where $h_m = A(\mathcal{T}^m)$ is learned by A for \mathcal{T}^m generated from p(x, y).



Example: generalization error and estimation error



р

m

9/12

Theorem: ULLN implies consistency of ERM

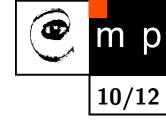
For fixed \mathcal{T}^m and $h_m \in \operatorname{Argmin}_{h \in \mathcal{H}} R_{\mathcal{T}^m}(h)$ we have:

$$R(h_m) - R(h_{\mathcal{H}}) = \left(R(h_m) - R_{\mathcal{T}^m}(h_m) \right) + \left(R_{\mathcal{T}^m}(h_m) - R(h_{\mathcal{H}}) \right)$$
$$\leq \left(R(h_m) - R_{\mathcal{T}^m}(h_m) \right) + \left(R_{\mathcal{T}^m}(h_{\mathcal{H}}) - R(h_{\mathcal{H}}) \right)$$
$$\leq 2 \sup_{h \in \mathcal{H}} \left| R(h) - R_{\mathcal{T}^m}(h) \right|$$

Therefore $\varepsilon \leq R(h_m) - R(h_{\mathcal{H}})$ implies $\frac{\varepsilon}{2} \leq \sup_{h \in \mathcal{H}} \left| R(h) - R_{\mathcal{T}^m}(h) \right|$ and

$$\mathbb{P}\bigg(R(h_m) - R(h_{\mathcal{H}}) \ge \varepsilon\bigg) \le \mathbb{P}\bigg(\sup_{h \in \mathcal{H}} \left|R(h) - R_{\mathcal{T}^m}(h)\right| \ge \frac{\varepsilon}{2}\bigg)$$

so if converges the RHS to zero (ULLN) so does the LHS (estimation error).



Finite sample bound on the estimation error

• Let $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$ be the hypothesis class with the best predictor

 $h_{\mathcal{H}} \in \operatorname{Argmin}_{h \in \mathcal{H}} R(h)$

• We learn h_m from $\mathcal{T}^m \sim p(x, y)$ with the ERM algorithm

 $h_m \in \operatorname{Argmin}_{h \in \mathcal{H}} R_{\mathcal{T}^m}(h)$

Assume we have for ${\cal H}$ the uniform bound on the generalization error

$$\mathbb{P}\Big(\sup_{h\in\mathcal{H}} \left|R_{\mathcal{T}^m}(h) - R(h)\right| \ge \varepsilon\Big) \le B(m,\mathcal{H},\varepsilon)$$

• Then, for any $\varepsilon > 0$ the inequality

$$R(h_m) \le R(h_{\mathcal{H}}) + \varepsilon$$

holds with the probability $1 - B(m, \mathcal{H}, \varepsilon/2)$ at least.

Excess error = Estimation error + Approximation errors

The characters of the play:

- $R^* = \inf_{h \in \mathcal{Y}^{\mathcal{X}}} R(h)$ best attainable true risk
- $R(h_{\mathcal{H}})$ best risk in \mathcal{H} where $h_{\mathcal{H}} \in \operatorname{Argmin}_{h \in \mathcal{H}} R(h)$
- $R(h_m)$ risk of $h_m = A(\mathcal{T}_m)$ learned from \mathcal{T}^m

Excess error: the quantity we want to minimize

$$\underbrace{\left(R(h_m) - R^*\right)}_{\text{excess error}} = \underbrace{\left(R(h_m) - R(h_{\mathcal{H}})\right)}_{\text{estimation error}} + \underbrace{\left(R(h_{\mathcal{H}}) - R^*\right)}_{\text{approximation error}}$$

Questions:

What causes individual errors ?

• How do the errors depend on \mathcal{H} and m?

