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Definition of the prediction problem @
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X is a set of input observations/features

Y is a set of hidden states

(x,y) € X x Y samples randomly drawn from r.v. with p.d.f. p(x,y)
h: X — ) is a prediction strategy/hypothesis

/: )Y x)Y — Ris aloss function

Task: find a strategy with the minimal true risk (expected loss)

yey

Bayes predictor h* attains the minimal risk R(h*) = ian R(h)
hey
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Example of a prediction problem @
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® The statistical model is known:
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e ¥ =R, Y={+1,-1}, {(y.y) {1 vy
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Machine Learning: solving the prediction problem @ 0
based on examples
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Assumption: we have an access to examples

{(zy"), (2% y%),...}

drawn from i.i.d. r.v. distributed according to unknown p(z,y).

1) Evaluation: estimate true risk R(h) of given h: X — ) using test set
S'={(@'y) e (X x V) [i=1,...1}

drawn i.i.d. from p(z,y).
2) Learning: find h: X — Y with small R(h) using training set

T ={(&'y) € (X x V) |i=1,...,m)

drawn i.i.d. from p(x,y).
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Evaluation: estimation of the expected risk @
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Given a predictor h: X — ) and a test set S' draw i.i.d. from
distribution p(x,y), compute the

Rgi(h) = %(g(yla h(zh)) + -+ 0y, h(xl)) =

1
and use it as an estimate of R(h) = E; ,)p(L(y, h(x))).

Rgi(h) is a random number with the variance depending on .

We construct a such that
R(h) € (Rgi(p) — € Rgipy +€) with probability (confidence) v € (0, 1)

where ¢ is a deviation.
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Law of large numbers @
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Sample mean (arithmetic average) of the results of random trials gets

closer to the expected value as more trials are performed.

Example: The expected value of a single roll of a fair die is

6
1+2+3+4+5+6
p=Ep(z) = Z zp(z) = 6 = 3.9
z=1
1 [
,LAL — 7 Z 2 6 Rolling a die: 5 experiments
1=1
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Counting frequency of bad estimates
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Rolling a die: 100 experiments
6 ! 20_
| —— empirical
| T 1.5- 2exp(—2Ig2/(b — a)?)
Al
N | ’I:Z 1.0
=
X O.SL
| T T T O.O_ T T T
1 50 100 150 200 1 50 100 150 200

/ I

sample size [ = 50, deviation € = 0.5 o _
Hoeffding inequality

~ > e 5 . 21 £2
#(’N :“| — ) _ —0.05 — ]}D(m — | > 5) < 2e (b-a)?
#experiments 100

a=1,b=06
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Hoeffding inequality @
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Theorem: Let {z!,..., 2!} be a sample from i.i.d. r.v. from [a, ] with
expected value u. Let 1 = %2221 2*. Then for any € > 0 it holds that

21 82

P(!ﬂ — pl = 8) <2 (-a)?

Properties:
Conservative: the bound may not be tight.
General: the bound holds for any distribution.

Cheap: The bound is simple and easy to compute.
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Confidence intervals @ 0
(l? 7) _> S 9/13

Let i = 237" 2% be the sample mean computed from
{z1,...,2'} € ]a,b]' sampled from r.v. with expected value .

Find € such that u € (i — €, i + €) with probability at least ~.

Using the Hoeffding inequality we can write

2l€2

P(\ﬂ—u\ < 6) =1 —P(\ﬂ—m > e) > 12 -2 =

and solving the last equation for € yields

log(2) — log(1 —
8_‘b_a‘\/og og 7)
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Confidence intervals @ 0
(Eﬂ "Y) _> l 10/13

Let i = 237" 2% be the sample mean computed from
{z1,...,2'} € ]a,b]' sampled from r.v. with expected value .

Given a fixed € > 0 and v € (0, 1), what is the minimal number of
examples [ such that u € (it — €, i + €) with probability ~ at least ?

Starting from

2l€2

P(\ﬂ—u\ <6) =1—P(\ﬂ—u| 26) >1—2¢ 0-9? =y

and solving for [ yields

,_ log(2) —zl;g(l —) (b — a)’
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CAm ¢
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Given h: X — ) estimate the true risk R(h) = E(, ,)~p(£(y, h(x))) by
the empirical risk Rgi(h) = 137, £(y%, h(x?)) using the test set S'.

Evaluation: estimation of the true risk

The incurred losses 2* = £(y", h(x")) € lmin, max), © € {1,...,1}, are
realizations of i.i.d. r.v. with the expected value u = R(h).

According to the Hoeffding inequality, for any € > 0 the probability of
seeing a “bad test set” can be bound by

. 21 82

For any p(x,y) and £: Y X YV — [lnin, Ymax|, the empricial risk
Rgi(h) convergences in probability to the true risk R(h):

Ve>0: lim P(‘Rsl(h) —R(h)‘ 25) — 0

[— 00
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Evaluation: recipe for constructing confidence intervals @
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Given h: X — ) estimate the true risk R(h) = E(; ,)~p(£(y, h(x))) by

the empirical risk Rgi(h) = %22:1 {(yt, h(x*)) using the test set S'.

R(h) € (Rgi(h) — e, Rgi(h) +¢€) with probability ~ € (0,1)

For fixed [ and v € (0,1) compute interval width

=l gmm)\/log@) —213g(1 -

For fixed € and v € (0,1) compute number of test examples

_ 1og(2) —log(1 — )
2 g2

[ (Emax — gmin)Z
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CAm ¢
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Example: confidence intervals for classification error

¢ The width of R(h) € (Rgi(h) — €, Rqi(h) +¢) is for L(y,y) = [y # ¥/]

given by € = \/10g(2)—21c2g(1_7)

—~=0.90
~v=0.95

0.15 - —120.99 |
w 0.1°
0.05 -

0 L] ‘ N S S R ‘ P

102 10° 10% 105

for v = 0.95

[ 100 | 1,000 | 10,000 | 18,445
e || 0.135 | 0.043 | 0.014 0.01

¢ Example: [ = 10,000, Rgi(h) = 0.162, then classification error is
16.2 + 1.4% with confidence 95%.
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