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Organisational Matters

Teachers: Jan Drchal, Boris Flach, Vojtech Franc + Daniel Bonilla

Format: 1 lecture & 1 tutorial per week (6 credits), tutorials of two types (alternating)

� practical tutorials: explaining and discussing practical homeworks, i.e. implementation
of selected methods (Python or Matlab)

� theoretical tutorials: discussing solutions of theoretical assignments

Grading: 40% homeworks + 60% written exam = 100% (+ bonus points)

Prerequisites:

� probability theory and statistics (A0B01PSI)

� pattern recognition and machine learning (AE4B33RPZ)

� optimisation (AE4B33OPT)

More details: https://cw.fel.cvut.cz/wiki/courses/be4m33ssu/start

http://cmp.felk.cvut.cz
https://cw.fel.cvut.cz/wiki/courses/be4m33ssu/start
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Goals

The aim of statistical machine learning is to develop systems (models and algorithms) for
solving prediction tasks given a set of examples and some prior knowledge about the task.

Machine learning has been successfully applied e.g. in areas

� text and document classification,

� speech recognition,

� computational biology (genes, proteins) and biological imaging & medical diagnosis

� computer vision,

� fraud detection, network intrusion,

� and many others

You will gain skills to construct learning systems for typical applications by successfully
combining appropriate models and learning methods.

http://cmp.felk.cvut.cz
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Characters of the play

� object features x ∈ X are observable; x can be:
a categorical variable, a scalar, a real valued vector, a tensor, a sequence of values, an
image, a labelled graph, . . .

� state of the object y ∈ Y is usually hidden; y can be: see above

� prediction strategy (a.k.a inference rule) h : X → Y; depending on the type of Y:

• y is a categorical variable ⇒ classification

• y is a real valued variable ⇒ regression

� training examples {(x, y) | x ∈ X , y ∈ Y}

� loss function ` : Y × Y → R+ penalises wrong predictions,
i.e. `(y, h(x)) is the loss for predicting y′ = h(x) when y is the true state

Goal: optimal prediction strategy h : X → Y that minimises the loss

Q: give meaningful application examples for combinations of different X , Y and
related loss functions

http://cmp.felk.cvut.cz
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Statistical machine learning

Main assumption:
� X, Y are random variables,
� X, Y are related by an unknown joint p.d.f. p(x, y),
� we can collect examples (x, y) drawn from p(x, y).

Typical concepts:
� regression: Y = f(X) + ε, where f is unknown and ε is a random error,
� classification: p(x, y) = p(y)p(x | y), where p(y) is the prior class probability and
p(x | y) the conditional feature distribution.

Consequences and problems
� the inference rule h(X) and the loss `(Y, h(X)) become random variables.
� risk of an inference rule h(X) ⇒ expected loss

R(h) = E[`(Y, h(X))] =
∑
x∈X

∑
y∈Y

p(x, y)`(y, h(x))

� how to estimate R(h) if p(x, y) is unknown?
� how to choose an optimal predictor h(x) if p(x, y) is unknown?

http://cmp.felk.cvut.cz


6/10
Statistical machine learning

Estimating R(h):

collect an i.i.d. test sample Sm =
{

(xi, yi) ∈ X × Y | i = 1, . . . ,m
}
drawn from p(x, y),

estimate the risk R(h) of the strategy h by the empirical risk

R(h) ≈ RSm(h) =
1

m

m∑
i=1

`(yi, h(xi))

Q: how strong can they deviate from each other? (see next lectures)

P
(
|RSm(h)−R(h)| > ε

)
≤??

http://cmp.felk.cvut.cz
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Statistical machine learning

Choosing an optimal inference rule h(x)

If p(x, y) is known:

The smallest possible risk is

R∗ = inf
h∈YX

R(h) = inf
h∈YX

∑
x∈X

∑
y∈Y

p(x, y)`(y, h(x)) =
∑
x∈X

p(x) inf
y′∈Y

∑
y∈Y

p(y |x)`(y, y′)

The corresponding best possible inference rule is the Bayes inference rule

h∗(x) = arg min
y′∈Y

∑
y∈Y

p(y |x)`(y, y′)

But p(x, y) is not known and we can only collect examples drawn from it. We need:

Learning algorithms that use training data and prior assumptions/knowledge about the task

http://cmp.felk.cvut.cz
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Learning types

Training data:
� if T m =

{
(xi, yi) ∈ X × Y | i = 1, . . . ,m

}
⇒ supervised learning

� if T m =
{
xi ∈ X | i = 1, . . . ,m

}
⇒ unsupervised learning

� if T m = T m1
l

⋃
T m2
u , with labelled training data T m1

l and unlabelled training data T m2
u

⇒ semi-supervised learning

Prior knowledge about the task:
� Discriminative learning: assume that the optimal inference rule h∗ is in some class of
rules H ⇒ replace the true risk by empirical risk

RT (h) =
1

|T |
∑

(x,y)∈T

`(y, h(x))

and minimise it w.r.t. h ∈ H, i.e. h∗T = arg min
h∈H

RT (h).

Q: How strong can R(h∗T ) deviate from R(h∗)? How does this deviation depend on H?

P
(
|R(h∗T )−R(h∗)| > ε

)
≤??

http://cmp.felk.cvut.cz
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Learning types

� Generative learning: assume that the true p.d. p(x, y) is in some parametrised family
of distributions, i.e. p = pθ∗ ∈ PΘ ⇒ use the training set T to estimate θ ∈ Θ:

1. θ∗T = arg max
θ∈Θ

pθ(T ), i.e. maximum likelihood estimator,

2. set h∗T = hθ∗T , where hθ denotes the Bayes inference rule for the p.d. pθ.

Q: How strong can θ∗T deviate from θ∗? How does this deviation depend on PΘ?

Possible combinations (training data vs. learning type)

discr. gener.
superv. yes yes
semi-sup. (yes) yes
unsuperv. no yes

In this course:

� discriminative: Support Vector Machines, Deep Neural Networks

� generative: mixture models, Hidden Markov Models, Markov Random Fields

� other: Bayesian learning, Ensembling

http://cmp.felk.cvut.cz
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Example: Classification of handwritten digits

x ∈ X - grey valued images, 28x28, y ∈ Y - categorical variable with 10 values

� discriminative: Specify a class of strategies H and a loss function `(y, y′). How would
you estimate the optimal inference rule h∗ ∈ H?

� generative: Specify a parametrised family pθ(x, y), θ ∈ Θ and a loss function `(y, y′).
How would you estimate the optimal θ∗ by using the MLE? What is the Bayes inference
rule for pθ∗?

http://cmp.felk.cvut.cz
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