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Lecture 9: EM algorithm; Bayesian learning

Czech Technical University in Prague

� Expectation Maximisation algorithm

� Bayesian inference

� Variational Bayesian inference
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1. The Expectation Maximisation Algorithm

Unsupervised generative learning:

� The joint p.d. pθ(x,y), θ ∈Θ is known up to the parameter θ ∈Θ,

� given training data T m =
{
xj ∈ X

∣∣ i= 1,2, . . . ,m
}
i.i.d. generated from pθ∗.

How shall we implement the MLE

eML(T m) = argmax
θ∈Θ

1

m

∑
x∈T m

logpθ(x) = argmax
θ∈Θ

ET m
[
log
∑
y∈Y

pθ(x,y)
]

� If θ is a single parameter or a vector of homogeneous parameters ⇒
maximise the log-likelihood directly.

� If θ is a collection of heterogeneous parameters ⇒
apply the Expectation Maximisation Algorithm (Schlesinger, 1968, Sundberg, 1974,
Dempster, Laird, and Rubin, 1977)

http://cmp.felk.cvut.cz
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1. The Expectation Maximisation Algorithm

EM algorithm:
� Introduce auxiliary variables αx(y)> 0, for each x ∈ T m, s.t.

∑
y∈Y

αx(y) = 1

� Construct a lower bound of the log-likelihood L(θ,T m)> LB(θ,α,T m)

� Maximise this lower bound by block-wise coordinate ascent.

Construct the bound:

L(θ,T m) = ET m
[
log
∑
y∈Y

pθ(x,y)
]

= ET m
[
log
∑
y∈Y

αx(y)

αx(y)
pθ(x,y)

]
>

LB(θ,α,T m) = ET m
∑
y∈Y

[
αx(y) logpθ(x,y)−αx(y) logαx(y)

]

The following equivalent representation shows the difference between L(θ,T m) and
LB(θ,α,T m):

LB(θ,α,T m) = ET m
[
logpθ(x)

]
−ET m

[
DKL(αx(y) ‖ pθ(y |x))

]
We see that the lower bound is tight if αx(y) = pθ(y | x) holds ∀x and ∀y.

http://cmp.felk.cvut.cz
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1. The Expectation Maximisation Algorithm

Maximise LB(θ,α,T m) by block-coordinate ascent:

Start with some θ(0) and iterate
E-step Fix the current θ(t), maximise LB(θ(t),α,T m) w.r.t. α-s. This gives

α(t)
x (y) = pθ(t)(y | x).

M-step Fix the current α(t) and maximise LB(θ,α(t),T m) w.r.t. θ.

θ(t+1) = argmax
θ∈Θ

ET m
[∑
y∈Y

α(t)
x (y) logpθ(x,y)

]
This is equivalent to solving the MLE for annotated training data.

Claims:
� The sequence of likelihood values L(θ(t),T m), t= 1,2, . . . is increasing, and the
sequence α(t), t= 1,2, . . . is convergent (under mild assumptions).

� There is no guarantee that the EM algorithm converges to a global maximum.
� It is important to use a proper initialisation.

http://cmp.felk.cvut.cz
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1. The Expectation Maximisation Algorithm

Example: Latent mode model (mixture) for images of digits

� x= {xi | i ∈D} image on the pixel domain D ∈ Z2,

� xi ∈ {0,1,2, . . . ,255}

� k ∈K latent variable (mode indicator),

� joint distribution - Naive Bayes model

p(x,k) = p(k)
∏
i∈D

p(xi | k)
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Learning problem: Given i.i.d. training data T m =
{
xj
∣∣ j = 1,2, . . . ,m

}
,

estimate the mode probabilities p(k) and the conditional probabilities p(xi | k), ∀xi ∈ B,
k ∈K and i ∈D.

http://cmp.felk.cvut.cz
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1. The Expectation Maximisation Algorithm

Applying the EM algorithm: Start with some model p(0)(k), p(0)(xi | k) and iterate the
following steps until convergence.
E-step Given the current model estimate p(t)(k), p(t)(xi | k), compute the posterior mode

probabilities for each image x in the training data T m

α(t)
x (k) = p(t)(k | x) =

p(t)(k)
∏
i∈D p

(t)(xi | k)∑
k′ p

(t)(k′)
∏
i∈D p

(t)(xi | k′)
.

M-step Re-estimate the model by solving

ET m
[∑
k∈K

α(t)
x (k)

[
logp(k) +

∑
i∈D

logp(xi | k)
]]
→max

p

This gives

p(t+1)(k) = ET m
[
α(t)
x (k)

]
p(t+1)(xi = b | k) =

ET m
[
α

(t)
x (k)

∣∣ xi = b
]

ET m
[
α

(t)
x (k)

]
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1. The Expectation Maximisation Algorithm

Additional reading:

Schlesinger, Hlavac, Ten Lectures on Statistical and Structural Pattern Recognition,
Chapter 6, Kluwer 2002 (also available in Czech)

Thomas P. Minka, Expectation-Maximization as lower bound maximization, 1998 (short
tutorial, available on the internet)

http://cmp.felk.cvut.cz
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2. Bayesian Inference

Motivation:

� Both, ERM and generative learning by MLE are consistent under the respective
regularity assumptions. Their estimation errors R(hm)−R(hH) and ‖θm−θ∗‖ are
small in the limit of large training data sizes m. On the other hand, their estimates hm
and θm can deviate by large margin from the respective optima in case of small training
data sizes.
Example: We want to learn deep NNs with > 106 parameters on training data T m with
m< 106.

� Models should be based on our knowledge about the problem. E.g. we do not want to
restrict the complexity of the model pθ(x,y), θ ∈Θ just because we have only a small
amount of training data.

http://cmp.felk.cvut.cz
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2. Bayesian inference

Bayesian inference: main assumptions & ingredients

Interpret the unknown parameter θ ∈Θ as a random variable.

� Data distribution: parametric family of models p(x,y |θ), θ ∈Θ,

� Prior distribution p(θ) on Θ.

Prior distribution p(θ) and i.i.d. training data T m =
{

(xi,yi)
∣∣ i= 1, . . . ,m

}
⇒

posterior parameter distribution p(θ |T m), given by

p(θ |T m) =
p(θ)p(T m |θ)

p(T m)
with p(T m |θ) =

m∏
i=1

p(xi,yi |θ).

Notice:

� a point estimate of θ is no longer needed!

� the posterior distribution p(θ |T m)∝ p(T m |θ)p(θ) interpolates between the situation
without any training data, i.e. m= 0 and the likelihood of training data for m→∞.

http://cmp.felk.cvut.cz
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2. Bayesian inference

Example 1. Consider the model

p(x |µ) =
1√
2πσ

exp
[
− 1

2σ2
(x−µ)2

]
and p(µ) =

1√
2πσ0

exp
[
− 1

2σ2
0

µ2
]
.

then we have

p(x,µ) = p(x |µ)p(µ) =
1

2πσσ0
exp
[
− 1

2σ2
(x−µ)2− 1

2σ2
0

µ2
]
,

p(x) =

∫
R

p(x |µ)p(µ)dµ=
1√

2π(σ2 +σ2
0)

exp
[
− x2

2(σ2 +σ2
0)

]
p(µ |x) =

p(x |µ)p(µ)

p(x)
∝ exp

[
− x2

2(σ2 +σ2
0)
− 1

2σ2
(x−µ)2− 1

2σ2
0

µ2
]

Notice the difference when estimating µ from a single example x:

� eML(x) = x.

� argmaxµp(µ |x) = 1
1+σ2/σ2

0
x.

http://cmp.felk.cvut.cz
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2. Bayesian inference

Sidestep: We consider θ as random with prior distribution p(θ), but go for a point estimate
given training data T m =

{
(xi,yi)

∣∣ i= 1, . . . ,m
}
:

θm = argmax
θ∈Θ

p(θ |T m) = argmax
θ∈Θ

p(T m |θ)p(θ) = argmax
θ∈Θ

∑
(x,y)∈T m

logp(x,y |θ) + logp(θ)

This results in an ML estimate with an additional regulariser

θm = argmax
θ∈Θ

[ 1

m

∑
(x,y)∈T m

logp(x,y |θ) +
1

m
logp(θ)

]

Example 2. We want to learn a DNN classifier with squashing activation functions
(e.g. tanh or sigmoid). Assuming a Gaussian prior N (0,σ) for the network weights, we get
the learning objective

1

m

∑
(x,y)∈T m

logp(y |x,w)− 1

2mσ2
‖w‖2→max

w

This enforces a considerable fraction of neurons to have small weights and thus also small
activations. They will therefore operate in a quasi linear regime.

http://cmp.felk.cvut.cz
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2. Bayesian inference

Retaining the posterior distribution p(θ |T m)∝ p(T m |θ)p(θ), we get the posterior
probability to observe a pair (x,y) by marginalising over θ ∈Θ:

p(x,y |T m) =
1

p(T m)

∫
Θ

p(T m |θ)p(x,y |θ)p(θ)dθ

This is a mixture of distributions with mixture weights αm(θ)∝ p(T m |θ)p(θ).

The Bayes optimal predictor w.r.t. 0/1 loss for this model mixture is

h(x,T m) = argmax
y∈Y

∫
Θ

p(θ)p(T m |θ)︸ ︷︷ ︸
αm(θ)∝

p(x,y |θ)dθ = argmax
y∈Y

∫
Θ

αm(θ)p(x,y |θ)dθ

Notice:

� the mixture weights αm(θ) interpolate between the situation without any training data,
i.e. m= 0 and the likelihood of training data for m→∞.

� similar approaches for ERM lead to Ensembling methods (see lectures 12,13).

http://cmp.felk.cvut.cz
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3. Variational Bayesian inference

Computing integrals like
∫
Θ

p(T m |θ)p(θ)dθ is in most cases not tractable.

Variational Bayesian inference: Approximate p(θ |T m) by some simple distribution qβ(θ)
and find the optimal parameter β by minimising the Kullback-Leibler divergence

DKL(qβ(θ) ‖ p(θ |T m)) =DKL(qβ(θ) ‖ p(θ))−
∫

Θ

qβ(θ) logp(T m |θ)dθ+ c→min
β

use qβ(θ) with optimal β for prediction (e.g. for 0/1 loss)

h(x) = argmax
y

∫
Θ

qβ(θ)p(x,y |θ)dθ

The integrals over θ can be often further simplified by sampling θi ∼ qβ(θ)

∫
Θ

qβ(θ)f(θ)dθ ≈ 1

m

n∑
i=1

f(θi)

http://cmp.felk.cvut.cz
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3. Variational Bayesian inference

Example 3 (Bayesian inference for DNNs). Let us consider the optimisation task∫
Rn
qµ(w) logp(T m |w)dw−DKL(qµ(w) ‖ p(w))→max

µ

for the following situation & assumptions:

� p(y |x,w) is a classifier DNN with weights w, i.e.

p(y |x,w) =
〈
y,softmax

(
η(x,w)

)〉
where y is the one-hot encoding of the class and η(x,w) is the network output layer
pre-activation.

� The prior distribution for the weights is p(w) =N (w;0,I).

� We approximate the posterior weight distribution by qµ(w) =N (w;µ,I)

http://cmp.felk.cvut.cz
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3. Variational Bayesian inference

The training objective (variational Bayesian inference) is:∫
Rn
qµ(w) logp(T m |w)dw−DKL(qµ(w) ‖ p(w))→max

µ
,

where T m denotes i.i.d. training data. We have

Eqµ(w)

[
logp(T m |w)

]
−DKL(N (µ,I) ‖ N (0,I))→max

µ

This task can be solved by SGD w.r.t. mini-batches and sampled network weights.
� the KL-divergence can be computed in closed form,
� approximate the integral in the first term by sampling from qµ(w) =N (w;µ,I) (with
current µ(t)),

� to compute gradients w.r.t. µ, apply re-parametrisation

w ∼N (µ,I)⇔ w = ε+µ with ε∼N (0,I)

The SGD step reads: sample a mini-batch, sample ε∼N (0,I), set w = µ(t) + ε, apply the
network and compute the gradient w.r.t. µ and apply a learning step ⇒ µ(t+1).

http://cmp.felk.cvut.cz
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