CourseWare Wiki
Switch Term
Winter 2025 / 2026
Winter 2024 / 2025
Winter 2023 / 2024
Winter 2022 / 2023
Winter 2021 / 2022
Winter 2020 / 2021
Winter 2019 / 2020
Winter 2018 / 2019
Older
Search
Log In
b241
courses
be4m33ssu
lectures
Warning
This page is located in archive. Go to the latest version of this
course pages
. Go the latest version of
this page
.
Syllabus
Week
Date
Topic
Lecturer
Pdf
Notes
1.
24. 9.
Introduction
VF
2.
1. 10.
Supervised learning for deep networks
JD
3.
8. 10.
Predictor evaluation
VF
(print
)
[1] Chap 2, [2] Chap 7
4.
15. 10.
Empirical risk minimization
VF
(print
)
[1] Chap 2, [2] Chap 7
5.
22. 10.
Probably Approximately Correct Learning
VF
(print
)
[1] Chap 4, [2] Chap 12
6.
29. 10.
dean's day
7.
5. 11.
SGD, Deep (convolutional) networks
JD
SGD
deep nets
8.
12. 11.
Support Vector Machines
VF
9.
19. 12.
Ensembling I
JD
[4], lecture moved to KN:A-320
10.
26. 1.
Ensembling II
JD
[2] Chap 10
11.
3. 12.
Generative learning, Maximum Likelihood estimator
VF
2025-01-15 Errata: slide 14, error in cumulant of Bernoulli
12.
10. 12.
EM algorithm, Bayesian learning
VF
13.
17. 12.
Hidden Markov Models I
JD
[5] Chap 17
14.
7. 12.
Hidden Markov Models II
JD
courses/be4m33ssu/lectures.txt
· Last modified: 2025/01/14 16:19 by
xfrancv