Warning
This page is located in archive.

Syllabus

Week Date Topic Lecturer Pdf Notes
1.24. 9. Introduction VF
2.1. 10. Supervised learning for deep networks JD
3.8. 10. Predictor evaluation VF (print ) [1] Chap 2, [2] Chap 7
4.15. 10. Empirical risk minimization VF (print ) [1] Chap 2, [2] Chap 7
5.22. 10. Probably Approximately Correct Learning VF (print ) [1] Chap 4, [2] Chap 12
6.29. 10. dean's day
7.5. 11. SGD, Deep (convolutional) networks JD SGD deep nets
8.12. 11. Support Vector Machines VF
9.19. 12. Ensembling I JD [4], lecture moved to KN:A-320
10.26. 1. Ensembling II JD [2] Chap 10
11.3. 12. Generative learning, Maximum Likelihood estimator VF 2025-01-15 Errata: slide 14, error in cumulant of Bernoulli
12.10. 12. EM algorithm, Bayesian learning VF
13.17. 12. Hidden Markov Models I JD [5] Chap 17
14.7. 12. Hidden Markov Models II JD
courses/be4m33ssu/lectures.txt · Last modified: 2025/01/14 16:19 by xfrancv