Statistical Machine Learning (BE4M33SSU) Lecture 3: Empirical Risk Minimization

Czech Technical University in Prague V. Franc

Learning

2/11

♦ The goal: Find a strategy $h \colon \mathcal{X} \to \mathcal{Y}$ minimizing R(h) using the training set of examples

$$\mathcal{T}^m = \{ (x^i, y^i) \in (\mathcal{X} \times \mathcal{Y}) \mid i = 1, \dots, m \}$$

drawn from i.i.d. according to unknown p(x, y).

Hypothesis class (space):

$$\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}} = \{h \colon \mathcal{X} \to \mathcal{Y}\}$$

Learning algorithm: a function

$$A: \cup_{m=1}^{\infty} (\mathcal{X} \times \mathcal{Y})^m \to \mathcal{H}$$

which returns a strategy $h_m = A(\mathcal{T}^m)$ for a training set \mathcal{T}^m

Learning: Empirical Risk Minimization approach

3/11

• The expected risk R(h), i.e. the true but unknown objective, is replaced by the empirical risk computed from the training examples \mathcal{T}^m ,

$$R_{\mathcal{T}^m}(h) = \frac{1}{m} \sum_{i=1}^m \ell(y^i, h(x^i))$$

lacktriangle The ERM based algorithm returns h_m such that

$$h_m \in \operatorname{Argmin}_{h \in \mathcal{H}} R_{\mathcal{T}^m}(h) \tag{1}$$

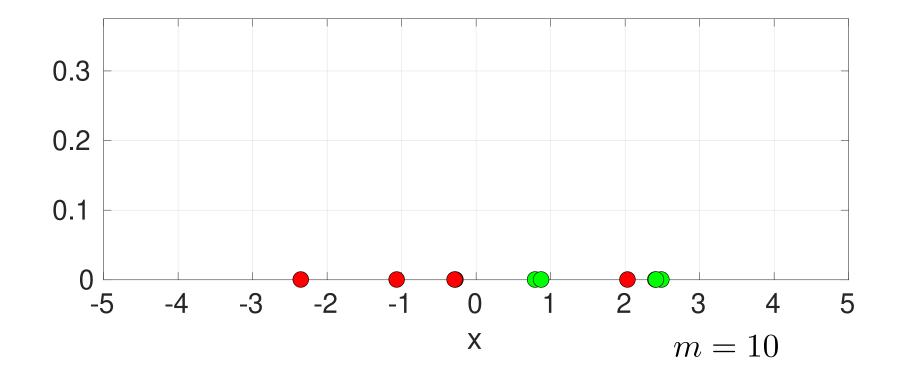
Learning: Empirical Risk Minimization approach

3/11

• The expected risk R(h), i.e. the true but unknown objective, is replaced by the empirical risk computed from the training examples \mathcal{T}^m ,

$$R_{\mathcal{T}^m}(h) = \frac{1}{m} \sum_{i=1}^m \ell(y^i, h(x^i))$$

$$\mathcal{H} = \{h(x) = \operatorname{sign}(x - \theta) \mid \theta \in \mathbb{R}\}\$$
, $\ell(y, y') = [y \neq y']$



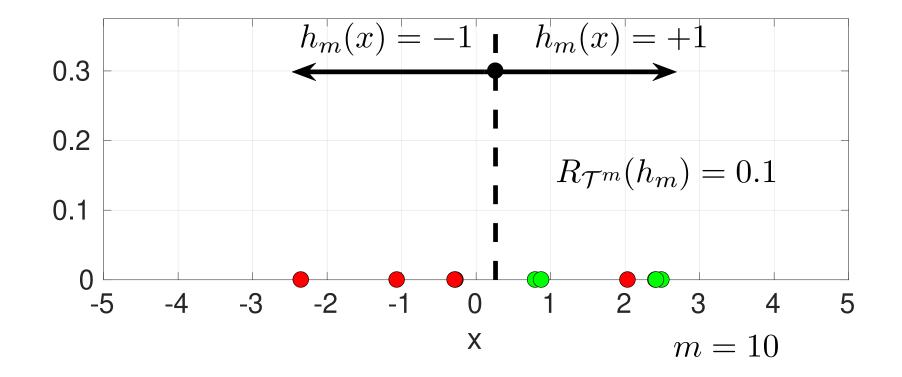
Learning: Empirical Risk Minimization approach

3/11

• The expected risk R(h), i.e. the true but unknown objective, is replaced by the empirical risk computed from the training examples \mathcal{T}^m ,

$$R_{\mathcal{T}^m}(h) = \frac{1}{m} \sum_{i=1}^m \ell(y^i, h(x^i))$$

$$\mathcal{H} = \{h(x) = \operatorname{sign}(x - \theta) \mid \theta \in \mathbb{R}\}\$$
, $\ell(y, y') = [y \neq y']$



3/11

• The expected risk R(h), i.e. the true but unknown objective, is replaced by the empirical risk computed from the training examples \mathcal{T}^m ,

$$R_{\mathcal{T}^m}(h) = \frac{1}{m} \sum_{i=1}^m \ell(y^i, h(x^i))$$

lacktriangle The ERM based algorithm returns h_m such that

$$h_m \in \operatorname{Argmin}_{h \in \mathcal{H}} R_{\mathcal{T}^m}(h) \tag{1}$$

• Depending on the choince of \mathcal{H} and ℓ and algorithm solving (1) we get individual instances e.g. Support Vector Machines, Linear Regression, Logistic Regression, Neural Networks learned by back-propagation, AdaBoost, Gradient Boosted Trees, ...

4/1

• Let $\mathcal{X} = [a,b] \subset \mathbb{R}$, $\mathcal{Y} = \{+1,-1\}$, $\ell(y,y') = [y \neq y']$, $p(x \mid y = +1)$ and $p(x \mid y = -1)$ be uniform distributions on \mathcal{X} and p(y = +1) = 0.8.

4/11

- Let $\mathcal{X} = [a,b] \subset \mathbb{R}$, $\mathcal{Y} = \{+1,-1\}$, $\ell(y,y') = [y \neq y']$, $p(x \mid y = +1)$ and $p(x \mid y = -1)$ be uniform distributions on \mathcal{X} and p(y = +1) = 0.8.
- The optimal strategy is h(x) = +1 with the Bayes risk $R^* = 0.2$.

- Let $\mathcal{X} = [a, b] \subset \mathbb{R}$, $\mathcal{Y} = \{+1, -1\}$, $\ell(y, y') = [y \neq y']$, $p(x \mid y = +1)$ and $p(x \mid y = -1)$ be uniform distributions on \mathcal{X} and p(y = +1) = 0.8.
- The optimal strategy is h(x) = +1 with the Bayes risk $R^* = 0.2$.
- Consider learning algorithm which for a given training set $\mathcal{T}^m = \{(x^1, y^1), \dots, (x^m, y^m)\}$ returns memorizing strategy

$$h_m(x) = \begin{cases} y^j & \text{if } x = x^j \text{ for some } j \in \{1, \dots, m\} \\ -1 & \text{otherwise} \end{cases}$$

4/11

- Let $\mathcal{X} = [a,b] \subset \mathbb{R}$, $\mathcal{Y} = \{+1,-1\}$, $\ell(y,y') = [y \neq y']$, $p(x \mid y = +1)$ and $p(x \mid y = -1)$ be uniform distributions on \mathcal{X} and p(y = +1) = 0.8.
- lacktriangle The optimal strategy is h(x)=+1 with the Bayes risk $R^*=0.2$.
- Consider learning algorithm which for a given training set $\mathcal{T}^m = \{(x^1, y^1), \dots, (x^m, y^m)\}$ returns memorizing strategy

$$h_m(x) = \left\{ \begin{array}{ll} y^j & \text{if } x = x^j \text{ for some } j \in \{1, \dots, m\} \\ -1 & \text{otherwise} \end{array} \right.$$

- The empirical risk is $R_{\mathcal{T}^m}(h_m) = 0$ with probability 1 for any m.
- The expected risk is $R(h_m) = 0.8$ for any m.

Generalization error

• ERM may fail when $R_{\mathcal{T}^m}(h_m)$ is not a good proxy of $R(h_m)$, because $R_{\mathcal{T}^m}(h)$ is used as a guidance to select h_m .

Generalization error

- ERM may fail when $R_{\mathcal{T}^m}(h_m)$ is not a good proxy of $R(h_m)$, because $R_{\mathcal{T}^m}(h)$ is used as a guidance to select h_m .
- We need the generalization error, i.e., the discrepancy between R(h) and $R_{\mathcal{T}^m}(h)$, to become small when the number of examples m grows:

$$\forall \varepsilon > 0: \lim_{m \to \infty} \mathbb{P}\left(\underbrace{|R_{\mathcal{T}^m}(h_m) - R(h_m)| \ge \varepsilon}\right) = 0$$
high generalization error

where $h_m = A(\mathcal{T}_m)$ is learned by $A: \bigcup_{m=1}^{\infty} (\mathcal{X} \times \mathcal{Y})^m \to \mathcal{H}$.

Generalization error

- ERM may fail when $R_{\mathcal{T}^m}(h_m)$ is not a good proxy of $R(h_m)$, because $R_{\mathcal{T}^m}(h)$ is used as a guidance to select h_m .
- We need the generalization error, i.e., the discrepancy between R(h) and $R_{\mathcal{T}^m}(h)$, to become small when the number of examples m grows:

$$\forall \varepsilon > 0: \lim_{m \to \infty} \mathbb{P}\left(\underbrace{|R_{\mathcal{T}^m}(h_m) - R(h_m)| \ge \varepsilon}\right) = 0$$
high generalization error

where $h_m = A(\mathcal{T}_m)$ is learned by $A: \bigcup_{m=1}^{\infty} (\mathcal{X} \times \mathcal{Y})^m \to \mathcal{H}$.

Plan for this lecture:

• Conditions on \mathcal{H} which guarantee that the generalization error converges to zero with growing number of examples m.

6/11

 $lackbox{$\bullet$}$ Hoeffding inequality $\mathbb{P}(|\hat{\mu}-\mu|\geq arepsilon)\leq 2e^{-rac{2m\,arepsilon^2}{(b-a)^2}}$, $\hat{\mu}=rac{1}{m}\sum_{i=1}^m z^i$, requires $\{z^1,\ldots,z^m\}$ to be sample from i.i.d. rv. with expeted value μ .

6/11

- $lackbox{ Hoeffding inequality } \mathbb{P}(|\hat{\mu}-\mu|\geq arepsilon)\leq 2e^{-rac{2m\,arepsilon^2}{(b-a)^2}},\, \hat{\mu}=rac{1}{m}\sum_{i=1}^m z^i,$ requires $\{z^1,\ldots,z^m\}$ to be sample from i.i.d. rv. with expeted value μ .
- $\mathcal{T}^m = \{(x^1, y^1), \dots, (x^m, y^m)\}$ is drawn from i.i.d. rv. with p(x, y).

- $lackbox{$lackbox{$\location{$lackbox{$\locatebox{$
- $\mathcal{T}^m = \{(x^1, y^1), \dots, (x^m, y^m)\}$ is drawn from i.i.d. rv. with p(x, y).

Evaluation:

- lacktriangleq h fixed independently on \mathcal{T}^m , $z^i = \ell(y^i, h(x^i))$ and $\{z^1, \dots, z^m\}$ is i.i.d.
- Therefore $\forall \varepsilon > 0$: $\lim_{m \to \infty} \mathbb{P}(|R_{\mathcal{T}^m}(h) R(h)| \ge \varepsilon) = 0$

- $lackbox{$lackbox{$\location{$lackbox{$\locatebox{$
- $\mathcal{T}^m = \{(x^1, y^1), \dots, (x^m, y^m)\}$ is drawn from i.i.d. rv. with p(x, y).

Evaluation:

- lacktriangleq h fixed independently on \mathcal{T}^m , $z^i=\ell(y^i,h(x^i))$ and $\{z^1,\ldots,z^m\}$ is i.i.d.
- Therefore $\forall \varepsilon > 0$: $\lim_{m \to \infty} \mathbb{P}(|R_{\mathcal{T}^m}(h) R(h)| \ge \varepsilon) = 0$

Learning:

- $lacktriangledown h_m = A(\mathcal{T}^m)$, $z^i = \ell(y^i, h_m(x^i))$ and thus $\{z^1, \dots, z^m\}$ is not i.i.d.
- No guarantee that $\forall \varepsilon > 0$: $\lim_{m \to \infty} \mathbb{P}(|R_{\mathcal{T}^m}(h_m) R(h_m)| \ge \varepsilon) = 0$

Uniform Law of Large Numbers

7/11

◆ Law of Large Numbers: for any p(x,y) generating \mathcal{T}^m , and $h \in \mathcal{H}$ fixed without seeing \mathcal{T}^m we have

$$\forall \varepsilon > 0: \lim_{m \to \infty} \mathbb{P}\left(\underbrace{|R(h) - R_{\mathcal{T}^m}(h)| \ge \varepsilon}_{\text{high generalization error}}\right) = 0$$

Uniform Law of Large Numbers

7/11

• Law of Large Numbers: for any p(x,y) generating \mathcal{T}^m , and $h\in\mathcal{H}$ fixed without seeing \mathcal{T}^m we have

$$\forall \varepsilon > 0 \colon \lim_{m \to \infty} \mathbb{P}\left(\underbrace{|R(h) - R_{\mathcal{T}^m}(h)| \ge \varepsilon}_{\text{high generalization error}}\right) = 0$$

lackloais Uniform Law of Large Numbers: if for any p(x,y) generating \mathcal{T}^m it holds that

$$\forall \, \varepsilon > 0 \colon \lim_{m \to \infty} \mathbb{P} \Big(\begin{array}{c} \left| R(h_1) - R_{\mathcal{T}^m}(h_1) \right| \geq \varepsilon \quad \text{or} \\ \left| R(h_2) - R_{\mathcal{T}^m}(h_2) \right| \geq \varepsilon \quad \text{or} \\ \vdots \\ \left| R(h_{|\mathcal{H}|}) - R_{\mathcal{T}^m}(h_{|\mathcal{H}|}) \right| \geq \varepsilon \\ & \text{high generalization error at least} \\ & \text{for one strategy} \Big) = 0$$

we say that ULLN applies for \mathcal{H} .

Uniform Law of Large Numbers

7/11

• Law of Large Numbers: for any p(x,y) generating \mathcal{T}^m , and $h \in \mathcal{H}$ fixed without seeing \mathcal{T}^m we have

$$\forall \varepsilon > 0: \lim_{m \to \infty} \mathbb{P}\left(\underbrace{|R(h) - R_{\mathcal{T}^m}(h)| \ge \varepsilon}\right) = 0$$
high generalization error

lacktriangle Uniform Law of Large Numbers: if for any p(x,y) generating \mathcal{T}^m it holds that

$$\forall \varepsilon > 0 \colon \lim_{m \to \infty} \mathbb{P}\left(\sup_{h \in \mathcal{H}} \left| R(h) - R_{\mathcal{T}^m}(h) \right| \ge \varepsilon\right) = 0$$
high generalization error at least for one strategy

we say that ULLN applies for \mathcal{H} .

@ m

Uniform Law of Large Numbers

7/11

• Law of Large Numbers: for any p(x,y) generating \mathcal{T}^m , and $h \in \mathcal{H}$ fixed without seeing \mathcal{T}^m we have

$$\forall \varepsilon > 0: \lim_{m \to \infty} \mathbb{P}\left(\underbrace{|R(h) - R_{\mathcal{T}^m}(h)| \ge \varepsilon}\right) = 0$$
high generalization error

ullet Uniform Law of Large Numbers: if for any p(x,y) generating \mathcal{T}^m it holds that

$$\forall \varepsilon > 0 \colon \lim_{m \to \infty} \mathbb{P}\left(\sup_{h \in \mathcal{H}} \left| R(h) - R_{\mathcal{T}^m}(h) \right| \ge \varepsilon\right) = 0$$
high generalization error at least for one strategy

we say that ULLN applies for \mathcal{H} .

• ULLN provides guarantees for all $h \in \mathcal{H}$ including $h_m = A(\mathcal{T}_m)$:

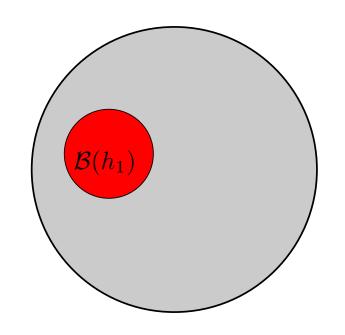
$$\mathbb{P}\Big(\big|R(h_m) - R_{\mathcal{T}^m}(h_m)\big| \ge \varepsilon\Big) \le \mathbb{P}\Big(\sup_{h \in \mathcal{H}} \big|R(h) - R_{\mathcal{T}^m}(h)\big| \ge \varepsilon\Big)$$

- Assume a finite hypothesis class $\mathcal{H} = \{h_1, \dots, h_K\}$.
- lacktriangle Define the set of all "bad" training sets for a strategy $h \in \mathcal{H}$ as

$$\mathcal{B}(h) = \left\{ \mathcal{T}^m \in (\mathcal{X} \times \mathcal{Y})^m \middle| \left| R_{\mathcal{T}^m}(h) - R(h) \right| \ge \varepsilon \right\}$$

- Assume a finite hypothesis class $\mathcal{H} = \{h_1, \dots, h_K\}$.
- lacktriangle Define the set of all "bad" training sets for a strategy $h \in \mathcal{H}$ as

$$\mathcal{B}(h) = \left\{ \mathcal{T}^m \in (\mathcal{X} \times \mathcal{Y})^m \middle| \left| R_{\mathcal{T}^m}(h) - R(h) \right| \ge \varepsilon \right\}$$

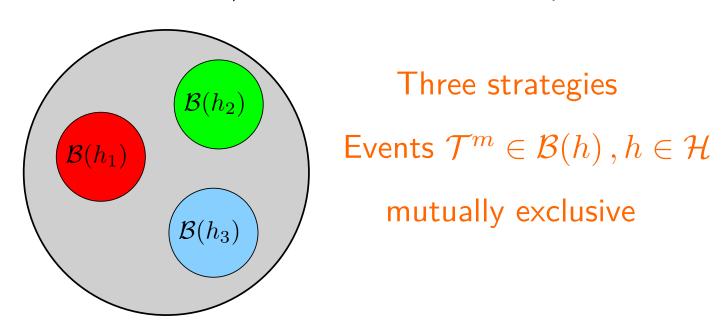


Single strategy

$$\mathbb{P}\Big(\big|R_{\mathcal{T}^m}(h_1) - R(h_1)\big| \ge \varepsilon\Big) = \mathbb{P}\Big(\mathcal{T}^m \in \mathcal{B}(h_1)\Big) \le 2e^{-\frac{2m\varepsilon^2}{(b-a)^2}}$$

- Assume a finite hypothesis class $\mathcal{H} = \{h_1, \dots, h_K\}$.
- Define the set of all "bad" training sets for a strategy $h \in \mathcal{H}$ as

$$\mathcal{B}(h) = \left\{ \mathcal{T}^m \in (\mathcal{X} \times \mathcal{Y})^m \middle| \left| R_{\mathcal{T}^m}(h) - R(h) \right| \ge \varepsilon \right\}$$



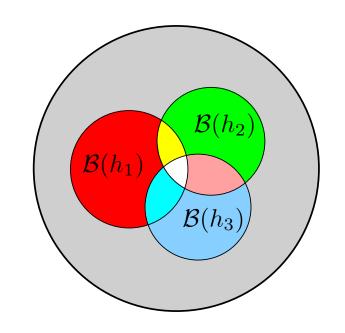
$$\mathbb{P}\Big(\max_{h\in\{h_1,h_2,h_3\}} \left| R_{\mathcal{T}^m}(h) - R(h) \right| \ge \varepsilon \Big) =$$

$$\mathbb{P}\Big(\mathcal{T}^m \in \mathcal{B}(h_1) \text{ or } \mathcal{T}^m \in \mathcal{B}(h_2) \text{ or } \mathcal{T}^m \in \mathcal{B}(h_3) \Big) =$$

$$\mathbb{P}\Big(\mathcal{T}^m \in \mathcal{B}(h_1) + \mathbb{P}\Big(\mathcal{T}^m \in \mathcal{B}(h_2) + \mathbb{P}\Big(\mathcal{T}^m \in \mathcal{B}(h_3) \Big) + \mathbb{P}\Big(\mathcal{T}^m \in \mathcal{B}(h_3) \Big)$$

- Assume a finite hypothesis class $\mathcal{H} = \{h_1, \dots, h_K\}$.
- lacktriangle Define the set of all "bad" training sets for a strategy $h \in \mathcal{H}$ as

$$\mathcal{B}(h) = \left\{ \mathcal{T}^m \in (\mathcal{X} \times \mathcal{Y})^m \middle| \left| R_{\mathcal{T}^m}(h) - R(h) \right| \ge \varepsilon \right\}$$



Three strategies

$$\mathbb{P}\Big(\max_{h\in\{h_1,h_2,h_3\}} |R_{\mathcal{T}^m}(h) - R(h)| \ge \varepsilon\Big) =$$

$$\mathbb{P}\Big(\mathcal{T}^m \in \mathcal{B}(h_1) \text{ or } \mathcal{T}^m \in \mathcal{B}(h_2) \text{ or } \mathcal{T}^m \in \mathcal{B}(h_3)\Big) \le$$

$$\mathbb{P}\Big(\mathcal{T}^m \in \mathcal{B}(h_1)\Big) + \mathbb{P}\Big(\mathcal{T}^m \in \mathcal{B}(h_2)\Big) + \mathbb{P}\Big(\mathcal{T}^m \in \mathcal{B}(h_3)\Big)$$

- Assume a finite hypothesis class $\mathcal{H} = \{h_1, \dots, h_K\}$.
- lacktriangle Define the set of all "bad" training sets for a strategy $h \in \mathcal{H}$ as

$$\mathcal{B}(h) = \left\{ \mathcal{T}^m \in (\mathcal{X} \times \mathcal{Y})^m \middle| \left| R_{\mathcal{T}^m}(h) - R(h) \right| \ge \varepsilon \right\}$$

lacktriangle Hoeffding inequality generalized for finite hypothesis class \mathcal{H} :

$$\mathbb{P}\Big(\max_{h\in\mathcal{H}} |R_{\mathcal{T}^m}(h) - R(h)| \ge \varepsilon\Big) \le \sum_{h\in\mathcal{H}} \mathbb{P}\big(\mathcal{T}^m \in \mathcal{B}(h)\big) = 2|\mathcal{H}| e^{-\frac{2m\varepsilon^2}{(b-a)^2}}$$

- Assume a finite hypothesis class $\mathcal{H} = \{h_1, \dots, h_K\}$.
- lacktriangle Define the set of all "bad" training sets for a strategy $h \in \mathcal{H}$ as

$$\mathcal{B}(h) = \left\{ \mathcal{T}^m \in (\mathcal{X} \times \mathcal{Y})^m \middle| \left| R_{\mathcal{T}^m}(h) - R(h) \right| \ge \varepsilon \right\}$$

lacktriangle Hoeffding inequality generalized for finite hypothesis class \mathcal{H} :

$$\mathbb{P}\Big(\max_{h\in\mathcal{H}} \left| R_{\mathcal{T}^m}(h) - R(h) \right| \ge \varepsilon \Big) \le \sum_{h\in\mathcal{H}} \mathbb{P}\big(\mathcal{T}^m \in \mathcal{B}(h)\big) = 2 \left| \mathcal{H} \right| e^{-\frac{2m\,\varepsilon^2}{(b-a)^2}}$$

ULLN applies for finite hypothesis class

$$\forall \varepsilon > 0: \lim_{m \to \infty} \mathbb{P}\Big(\max_{h \in \mathcal{H}} |R_{\mathcal{T}^m}(h) - R(h)| \ge \varepsilon\Big) = 0$$

9/11

lacktriangle Hoeffding inequality generalized for a finite hypothesis class \mathcal{H} :

$$\mathbb{P}\Big(\max_{h\in\mathcal{H}}|R_{\mathcal{T}^m}(h)-R(h)|\geq\varepsilon\Big)\leq 2|\mathcal{H}|e^{-\frac{2m\,\varepsilon^2}{(b-a)^2}}$$

9/11

lacktriangle Hoeffding inequality generalized for a finite hypothesis class \mathcal{H} :

$$\mathbb{P}\Big(\max_{h\in\mathcal{H}}|R_{\mathcal{T}^m}(h)-R(h)|\geq\varepsilon\Big)\leq 2|\mathcal{H}|e^{-\frac{2m\,\varepsilon^2}{(b-a)^2}}$$

• Find an upper bound ε on the generalization error which holds uniformly for all $h \in \mathcal{H}$ with probability $1 - \delta$ at least:

$$\mathbb{P}\Big(\max_{h\in\mathcal{H}}|R_{\mathcal{T}^m}(h) - R(h)| < \varepsilon\Big) = 1 - \mathbb{P}\Big(\max_{h\in\mathcal{H}}|R_{\mathcal{T}^m}(h) - R(h)| \ge \varepsilon\Big)$$
$$\ge 1 - 2|\mathcal{H}|e^{-\frac{2m\,\varepsilon^2}{(b-a)^2}} = 1 - \delta$$

and solving the last equality for ε yields

$$\varepsilon = (b - a)\sqrt{\frac{\log 2|\mathcal{H}| + \log \frac{1}{\delta}}{2m}}$$

10/11

Theorem: Let $\mathcal{T}^m = \{(x^1, y^1), \dots, (x^m, y^m)\} \in (\mathcal{X} \times \mathcal{Y})^m$ be draw from i.i.d. rv. with p.d.f. p(x,y) and let \mathcal{H} be a finite hypothesis class. Then, for any $0 < \delta < 1$, with probability at least $1 - \delta$ the inequality

$$R(h) \leq \underbrace{R_{\mathcal{T}^m}(h)}_{\text{empirical risk}} + \underbrace{(b-a)\sqrt{\frac{\log 2|\mathcal{H}| + \log \frac{1}{\delta}}{2m}}}_{\text{complexity term}}$$

holds for all $h \in \mathcal{H}$ simultaneously and any loss function $\ell \colon \mathcal{Y} \times \mathcal{Y} \to [a, b]$.

10/11

Theorem: Let $\mathcal{T}^m = \{(x^1, y^1), \dots, (x^m, y^m)\} \in (\mathcal{X} \times \mathcal{Y})^m$ be draw from i.i.d. rv. with p.d.f. p(x,y) and let \mathcal{H} be a finite hypothesis class. Then, for any $0 < \delta < 1$, with probability at least $1 - \delta$ the inequality

$$R(h) \leq \underbrace{R_{\mathcal{T}^m}(h)}_{\text{empirical risk}} + \underbrace{(b-a)\sqrt{\frac{\log 2|\mathcal{H}| + \log \frac{1}{\delta}}{2m}}}_{\text{complexity term}}$$

holds for all $h \in \mathcal{H}$ simultaneously and any loss function $\ell \colon \mathcal{Y} \times \mathcal{Y} \to [a, b]$.

Recommendations that follow from the bound:

- Minimize the empirical risk.
- More training examples the better.
- Select appropriate trade-off between $|\mathcal{H}|$ and m:

11/11

lacktriangle Learn $h\colon \mathcal{X} o \mathcal{Y}$ by minimizing the generalization bound

$$R(h) \le R_{\mathcal{T}^m}(h) + \underbrace{(b-a)\sqrt{\frac{\log 2|\mathcal{H}| + \log \frac{1}{\delta}}{2m}}}_{\epsilon(m,|\mathcal{H}|,\delta)}$$

m p

lacktriangle Learn $h\colon \mathcal{X} o \mathcal{Y}$ by minimizing the generalization bound

$$R(h) \le R_{\mathcal{T}^m}(h) + \underbrace{(b-a)\sqrt{\frac{\log 2|\mathcal{H}| + \log \frac{1}{\delta}}{2m}}}_{\epsilon(m,|\mathcal{H}|,\delta)}$$

Design a nested sequence of hypothesis classes

$$\mathcal{H}_1 \subset \mathcal{H}_2 \subset \cdots \subset \mathcal{H}_K$$

lacktriangle Learn $h\colon \mathcal{X} o \mathcal{Y}$ by minimizing the generalization bound

$$R(h) \le R_{\mathcal{T}^m}(h) + \underbrace{(b-a)\sqrt{\frac{\log 2|\mathcal{H}| + \log \frac{1}{\delta}}{2m}}}_{\epsilon(m,|\mathcal{H}|,\delta)}$$

Design a nested sequence of hypothesis classes

$$\mathcal{H}_1 \subset \mathcal{H}_2 \subset \cdots \subset \mathcal{H}_K$$

- Minimize the generalization bound:
 - 1. $h_i = \underset{h \in \mathcal{H}_i}{\operatorname{argmin}} R_{\mathcal{T}^m}(h), \quad \forall i \in \{1, \dots, K\}$

2.
$$i^* = \underset{i=1,...,K}{\operatorname{argmin}} \left(R_{\mathcal{T}^m}(h_i) + \epsilon(m, |\mathcal{H}_i|, \delta) \right)$$

3. Output h_{i^*}

lacktriangle Learn $h\colon \mathcal{X} o \mathcal{Y}$ by minimizing the generalization bound

$$R(h) \le R_{\mathcal{T}^m}(h) + \underbrace{(b-a)\sqrt{\frac{\log 2|\mathcal{H}| + \log \frac{1}{\delta}}{2m}}}_{\epsilon(m,|\mathcal{H}|,\delta)}$$

