Cvičení 4: 1D pole

Najdi a změň

  • Napište funkci my_find(a,b), která v řetezci a hledá řetězec b (nepoužívejte vestavěnou funkci find).
  • Pokud řetězec najde, vrátí index jeho prvního výskytu zleva.
  • Pokud řetězec nenajde, vrátí -1.
  • Napište funkci my_replace(a,b,c), která v řetězci a nahradí všechny výskyty řetězce b řetězcem c.
  • Ve funkcích používejte pouze funkce
    • len(s) - délka řetězce,
    • s[i] - znak na pozici i,
    • s[i:j] - podřetezec od i do j
    • s[:j], s[i:] - podřetězec od počátku do j, resp. od i do konce.

Záměna slova

  • Napište program, který čte standardní vstup a v načteném řetězci zamění slovo Ahoj za slovo Cau.
  • Můžete využít vestavěné funkce find, replace, nebo Vaše funkce z předchozí úlohy.
  • Pokud se ve vstupním řetězci objeví slovo Konec, program skončí. V tomto řádku ale nejdříve zamění Ahoj za Cau.

Nalezení maxima

  • Napište funkci, která vrací největší hodnotu v poli a zároveň vrací index tohoto prvku
  • Pro pole nulové délky vrací index -1.
  • Pozor: je třeba předpokládat, že v poli mohou být jakékoliv hodnoty (kladné, nuly, záporné)!

Nalezení druhého největšího prvku v poli

  • Napište funkci, která vrací druhou největší hodnotu v poli a zároveň vrací index tohoto prvku
  • Pro pole délky méně než 2 vrací index -1.
  • Pozor: je třeba předpokládat, že v poli mohou být opět jakékoliv hodnoty (kladné, nuly, záporné)!

Témata k procvičení

Polynomy

  • Polynom $a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$ můžeme reprezentovat polem koeficientů [ a_0, a_1, a_2, … , a_n ]
  • Příklad:
    • polynomu $1 + x - 2x^2$ odpovídá pole [1, 1, -2 ]
    • polynomu $x - x^3$ odpovídá pole [0, 1, 0,-1 ]
  • Nulové koeficienty lze vynechat u nejvyšších mocnin, ale ne u nejnižších.
  • Příklad:
    • [0,1,2] vyjadřuje polynom $x + 2x^2$
    • [0,1,2,0] vyjadřuje taktéž polynom $x + 2x^2$
    • ale [1,2,0] vyjadřuje polynom $1 + 2x$

Výpis polynomu

  • Napište funkci printPoly,která vypíše polynom, přičemž mocniny bude tisknout znakem '^'.
  • Pokud je nějaký koeficient nulový, příslušný člen se nevypíše.
  • Příklad:
    • printPoly( [ 1, 1, 0, -2] ) vytiskne 1 + x - 2x^3
    • printPoly( [ -2, 0, 0, -2, 0, 0, 0] ) vytiskne -2 - 2x^3

Výpočet hodnoty polynomu

  • Napište funkci polyValue , která pro zadaný polynom a hodnotu x vypočte jeho hodnotu v zadaném bodě $x$
  • Tedy polyValue([1,0,2], 4) má hodnotu 33, protože $1 + 2x^2$ pro $x=4$ je 33.

Výpočet maximální (minimální) hodnoty polynomu

  • Napište funkci, která pro zadaný polynom najde maximum/minimum v zadaném intervalu $<a,b>$. Řešte numericky, např. s krokem $\delta=0.1$. Nápověda: použijte funkci pro výpočet hodnoty polynomu.
  • Napište funkci pro výpočet první derivace polynomu:
    • Příklad: derivace [0,2,-3] je [2,-6] neboť derivace $2x - 3x^2$ je $2 - 6x$

Domácí úkol

courses/b3b33alp/cviceni/t04.txt · Last modified: 2024/07/29 13:56 by vonasvoj