Search
Tato úloha je věnována klasifikaci znaků. Termín odevzdání úlohy je v BRUTE, kam řešení i odevzdáte. Hodnocení viz hodnoceni. Předpokládá se, že studenti požadované metody sami implementují a nebudou využívat již hotových řešení. Použitý algoritmus řešení musí odpovídat algoritmu specifikovému v zadání.
Úlohu vypracujte v požadované verzi Pythonu!
Poděkování: Některá data poskytnuta laskavostí firmy Eyedea Recognition. Jiná data z nejrůznějších veřejných zdrojů.
Úkolem je navrhnout a naprogramovat klasifikátory/rozpoznávače znaků (metodu k-nejbližších sousedů a naivní bayesovský klasifikátor). Vstupem je malý šedotónový obraz jednoho ručně napsaného znaku - písmeno nebo číslice - výstupem je rozhodnutí o třídě, tedy rozpoznání znaku na obrazu.
K dispozici máte trénovací data, soubor obrazů s informací o správné klasifikaci. Je dobré si uvědomit, že to je obvykle vše, co vám dá zákazník k dispozici. Poté, co připravíte kód, zákazník, kterého v tomto případě představuje cvičící, přinese testovací data, na kterých vaši práci ohodnotí. Doporučujeme odsimulovat rozdělením dat, která máte k dispozici, na trénovací a validační množinu.
Váš výsledný kód bude v rámci AE ozkoušen na nových datech.
Obrazy jsou ve formátu png v jednom adresáři, kde je i soubor truth.dsv (dsv format). Jména souborů nemají s obsahem nic společného. Soubor truth.dsv má na každém řádku jmeno_souboru.png:znak, např. img_3124.png:A. Oddělovačem je znak :, který se v názvu souboru nevyskytuje. Jména souborů obsahují pouze písmena, číslice a znak podtržítko.
truth.dsv
jmeno_souboru.png:znak
img_3124.png:A
:
Naprogramujte knn.py a naive_bayes.py, které budou spouštěny s parametry, viz help níže
knn.py
naive_bayes.py
>> python3 knn.py -h usage: knn.py [-h] (-k K) [-o filepath] train_path test_path Learn and classify image data with a k-NN classifier. positional arguments: train_path path to the training data directory test_path path to the testing data directory optional arguments: -h, --help show this help message and exit -k K number of neighbours (if k is 0 the code may decide about proper K by itself) -o filepath path (including the filename) of the output .dsv file with the results
python3 knn.py -k 3 -o classification.dsv ./train_data ./test_data
Podobně
>> python3 naive_bayes.py -h usage: naive_bayes.py [-h] [-o filepath] train_path test_path Learn and classify image data with a naive bayes classifier. positional arguments: train_path path to the training data directory test_path path to the testing data directory optional arguments: -h, --help show this help message and exit -o filepath path (including the filename) of the output .dsv file with the results
-o
classification.dsv
numpy
PIL
scikit-learn
pandas
Odevzdávat budete ZIP archiv s vašimi moduly knn.py, naive_bayes.py a případně se všemi moduly, které tyto moduly importují. Tyto soubory musí být v kořeni archívu, archív nesmí obsahovat žádné adresáře! ZIP archív (a jen tento soubor) nahrajete do BRUTE.
Pokud si nejste jistí, jak úlohu vyřešit, nabízíme následující tipy. Vaše řešení bude patrně zahrnovat následující dílčí kroky:
Můžete zvážit i následující:
Obr. 3: Příklad automatické lokalizace textu v obrazech. Více informací na http://cmp.felk.cvut.cz/~zimmerk/lpd/index.html.
Obr. 4: Příklad komerční aplikace na rozpoznávání registračních značek ve videu. Demonstrační videa lze nalézt na adrese http://cmp.felk.cvut.cz/cmp/courses/X33KUI/Videos/RP_recognition.
Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer Science+Bussiness Media, New York, NY, 2006.
T.M. Cover and P.E. Hart. Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1):21–27, January 1967.
Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern classification. Wiley Interscience Publication. John Wiley, New York, 2nd edition, 2001.
Vojtěch Franc and Václav Hlaváč. Statistical pattern recognition toolbox for Matlab. Research Report CTU–CMP–2004–08, Center for Machine Perception, K13133 FEE. Czech Technical University, Prague, Czech Republic, June 2004. http://cmp.felk.cvut.cz/cmp/software/stprtool/index.html.
Michail I. Schlesinger and Václav Hlaváč. Ten Lectures on Statistical and Structural Pattern Recognition. Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002.