Warning
This page is located in archive. Go to the latest version of this course pages. Go the latest version of this page.

Presentations

List of available topics

the specific date may change.

No. Date Student Topic
1. 28. 9. xxxxxxxx
2. 5.10. xxxxxxxx
3. 12.10. xxxxxxxx
4. 19.10. David Štorek [44] Halfedge data structure in OpenMesh library. Demo of ovelap of planar subdivisions.
Quentin Cretier [1] 2D range tree construction and range tree search [PREPARATA 77-87, Mount (75-)79-81, Berg 99-120]. Focus on a demonstration example or an applet. Do not repeat Lecture 3.
5. 26.10. Roman Sip [9a] Convex Hull of a simple polygon: algorithm of Lee] [PREPARATA 166-171]
Pablo Aguayo [9b] Convex Hull of a simple polygon: algorithm of Melkman [PREPARATA 166-171]
6. 2.11. Jiří Povolný [8] Beneath-beyond method (horní-dolní) [PREPARATA 131-140].
Petr Nahodil [7] Overmars and van Leeuwen algorithm of dynamic convex hull. [PREPARATA 118-125]. Detailed example.
7. 9.11. Tomas Reinhold [11] Diameter of a point set. [PREPARATA 178-183].
Adam Pončák [23] (2) Kernel of a Polygon [Lee]
8. 16.11. Robert Papay [13] Largest empty circle [PREPARATA 248-254]
Tereza Langová [12] Smallest enclosing circle. [Berg 86-89, Mount20 135-140, PREPARATA 248-254] Impementace
9. 23.11. Petr Lhota [14] k-th order Voronoi diagram. [PREPARATA 242-246].
Petr Šádek [44] Variants of Voronoi diagram - different metrics, weights, and site shapes applets (use appletviewer from jdk 10)
10. 30.11. Jan Macalík [18] D&C Algorithm of Delaunay triangulation: DeWall algorithm. [ Cignoni, Maur '02, 15-17].
Jan Ferbr [43] Quad edge data structure and its usage for storage of DT and VD.[Rourke 147-149,199, Guibas&Stolfi], Overview
11. 7.12.
12. 14.12.
13. 21.12. Martin Koudelka [25] Algorithm for computation of the perimeter of a union of rectangles. [PREPARATA 340-347]
Martin Němec [35] Intersection of convex polygons. [O'Rourke 242-252]
14. 11.1. Zdeněk Kolář [6] Triangular method for planar search (Kirkpatrick's Planar point location) [PREPARATA 57-60, Mount 116-120].
Jakub Profota [39] Kinetic data structures - introduction - kinetic convex hull Razzazi

Literature

[Berg, Mount, O'Rourke, Preparata] viz úvodní stránka

[Mulmuley] K. Mulmuley. Computational Geometry: An Introduction Through Randomized Algorithms. Prentice-Hall, New York, 1993

[Maur] Maur, P: Delaunay Triangulation in 3D. State of the Art and Concept of Doctoral Thesis, ZCU 2002

courses/cg/presentations/start.txt · Last modified: 2023/12/11 12:21 by felkepet