An Optimal Algorithm for Finding the Kernel of a Polygon

D. T. LEE AND F. P. PREPARATA

University of 1llinois at Urbana-Champaign, Urbana, Illnos

ABSTRACT The kernel K(P) of a simple polygon P with n vertices 1s the locus of the pomnts nternal to P from
which all vertices of P are visible Equivalently, K(P) 1s the intersection of appropriate half-planes determined by
the polygon’s edges Although 1t 1s known that to find the intersection of n generic half-planes requires time
O(n log n), we show that one can exploit the ordering of the half-planes corresponding to the sequence of the
polygon’s edges to obtain a kernel finding algorithm which runs 1n time O(n) and 1s therefore optimal

KEY WORDS AND PHRASES ~ computational complexity, optimal algorthms, simple polygon, kernel of polygon

CR CATEGORIES 449,525,532

1. Introduction

The kernel K(P) of a simple polygon P is the locus of the points internal to P which can be
joined to every vertex of P by a segment totally contained in P. Equivalently, if one
considers the boundary of P as a counterclockwise directed cycle, the kernel of P 1s the
intersection of all the half-planes lying to the left of the polygon’s edges.

Shamos and Hoey [1] have presented an algorithm for finding the kernel of an n-edge
polygon in time O(n log n). Their algorithm is based on the fact that the intersection of n
generic half-planes can be found in time O(n log n); they also show that Q(n log n) is a
lower bound to the time for finding the intersection of » half-planes. However, this lower
bound does not apply to the problem of finding the kernel, since in the latter case the half-
planes are ordered according to the sequence of the edges of P, nor does their algorithm
take advantage of this order. In this note we shall show that, indeed, this ordering can be
exploited to yield an algorithm which runs in time linear in the number of the edges.
Obviously, since each edge must be examined, the time of our algorithm is optimal within
a multiplicative constant.

The model of computation used for the above results, which we shall also adopt in this
paper, is a random-access machine (RAM) with real-number arithmetic, i.e. with the
capability of performing comparisons of real numbers and rational operations on real
numbers.

The input polygon P is represented by a sequence of vertices vo, V1, ..., Va1, With n = 4,
in which each v, has real-valued x- and y-coordinates (x., y.), and (v.-1, v.) (see Footnote
1), fori= 1,2, ..., n,1s the edge of the polygon connecting vertices v.—; and v,. For ease of
reference we shall describe P by a circular list of vertices and intervening edges as
Vo€1V1€2 -+ €,-1Vn_1€0¥0, Where e, = (v._1, v,). We also impose a direction upon each edge
Permission to copy without fee all or part of this materal 1s granted provided that the copies are not made or
distnibuted for direct commercial advantage, the ACM copyrnight notice and the title of the publication and its

date appear, and notice 1s given that copying 1s by permisston of the Association for Computing Machinery To
copy otherwise, or to republish, requires a fee and/or specific permission

This work was supported by the National Science Foundation under Grant MCS 76-17321 and by the Joint
Services Electronics Program under Contract DAAB-07-72-C-0259

Authors’ present addresses D T Lee, Department of Electrical Engineering and Computer Science, Northwestern
Umversity, Evanston, IL 60201, F.P Preparata, Coordinated Science Laboratory, Umversity of Ithinows at
Urbana-Champaign, Urbana, IL 61801

' All indices are taken modulo
© 1979 ACM 0004-5411,/79/0700-0415 $00 75

Journal of the A 1on for Comp Machinery, Vol 26, No 3, July 1979, pp 415-42}

&

416 D. T. LEE AND F. P. PREPARATA

~
Va-l
i -
~
-~
- i 7
Rt
g —_—
-~ - — 1
-7 LI - //‘//>‘
Ly ™
Fic 1 Hlustration of the definition of F, and L, Fic 2 llustration of polygon K,

such that the interior of the polygon lies to the left of the edge, or, equivalently, the
boundary of P is directed counterclockwise. A vertex v, 1s called reflex if v..1 lies to the
right of the line containing e, and directed like e, that is, if the interior angle at v, is larger
than 180°; a vertex is called convex otherwise. We also assume that the intenor angle at a
convex vertex v, be strictly smaller than 180°, since the elimination of straight-angle
vertices does not change P and can be done by a preliminary scan of the boundary of P in
time O(n). It is obvious that the kernel of P, being the intersection of half-planes, is a
convex polygon K(P) and is bounded by at most n edges. Thus if the kernel is nonempty,
the output will also be represented by the sequence of vertices and edges of the polygon
K(P).

2. The Algorithm

The algorithm we shall outline scans in order the vertices of P and construct a sequence of
convex polygons Kj, Ky, ..., Ka-1. Each of these polygons may or may not be bounded. We
shall later show (Lemma 1) that K, is the common intersection of the half-planes lying to
the left of the directed edges eo, ey, ... , &. This result has the obvious consequences that
K1 = K(P) and that K; D Kz D --- D K;; the latter implies that there is some r > 1 such
that X, 1s unbounded or bounded depending upon whether ¢ < r or i = r, respectively.

Notationally, if points w, and w.., belong to the line containing the edge e, of P, then
w.e; w.+1 denotes the segment between w, and w..; with the same direction as e,. When a
polygon K, is unbounded, two of its edges are half-lines; so, Aew denotes a half-line
terminating at point w and directed like edge e, while weA denotes the complementary
half-line.

During the processing, the boundary of K is maintained as a doubly linked list of
vertices and intervening edges. This list will be either linear or circular, depending upon
whether K, is unbounded or bounded, respectively. In the first case, the first and last item
of the list will be called the list head and list tail, respectively.

Among the vertices of K, we distinguish two vertices F, and L,, defined as follows.
Consider the two lines of support’ of K, through vertex v, of P. Let f; and /, be the two half-
lines of these lines which contain the points of support, named so that the clockwise angle
from f, to /, in the plane wedge contaming K, 1s no greater than 7 (Figure 1). Vertex F; 1s
the point common to f; and K, which 1s farthest from v,; L, is similarly defined. These two
vertices play a crucial role 1n the construction of K+ from K.

If P has no reflex vertex, then P is convex and trivially X(P) = P. Thus let v, be a reflex
vertex of P. We can now describe the kernel algorithm.

Imtial Step We set K, equal to the intersection of the half-planes lying to the left of edges e and), 1€ K «
AevoeoA (Figure 2) Fi « point at infinity of Aeyvo, L, < point at infimty of veesA

? Recall that [1s a line of support of a polygon P 1f / has at least one point in common with P and the interior of
P entirely hes on one side of /

An Optimal Algorithm for Finding the Kernel of a Polygon 417

General Step We distinguish several cases We assume that the vertices of K, be numbered consecutively as wi,
wy, , counterclockwise

(1) Vertex v, is reflex (see Figures 3(a, b))

(1 1) F, lies on or to the right of Ae..\v..; (Figure 3(a)) We scan the boundary of K, counterclockwise from F,
unul either we reach a unique edge (w,-,w;) of K, intersecting Ae,+1v.+; or we reach L, without finding
such an edge In the latter case, we terminate the algorithm (K(P) = &) In the former case, we take the
following actions

(1) We find the intersection w’ of (w,-1wy) and Aev1v,+9
(n) We scan the boundary of K, clockwise from F,. until either we reach an edge (w.-,w.)
intersecting Ae,+1v.+1 at a point w” (this 1s guaranteed if X, 15 bounded) or (only when X, 1s
unbounded) we reach the list head without finding such an edge In the first case, letting K,
= aw, +- w13 (where a and 8 are sequences of alternating edges and vertices), we set Ky
«— aw”e.,w B, 1n the second case (K, 15 unbounded) we must test whether K., 1s bounded
or unbounded If the slope of Ae.+iv.+1 1s compnised between the slopes of the mnitial and
final half-lnes of K,, then K., « Ae...w'B 1s also unbounded Otherwise we begin scanning
the boundary of K, clockwise from the list tarl until an edge (w,-1w;) 1s found which intersects
Aei1vier at a pomnt w”, letung K, = yw,—, 8w, we set K1 < dw”e. 1w and the hist becomes
circular
The selection of F..1 15 done as follows If Ae,.1v.41 has just one intersection with K,, then F.4, « (point
at infinity of Ae,+1v,+1). otherwise F,.1 «~ w” To determine L..,, we scan K, counterclockwise from L,
until either a vertex w, of K, 1s found such that w,., lies to the left of v,41(v..iw)A, or the hist of K, 15
exhausted without finding such vertex In the first case L.+, < w,, tn the other case (which may happen
only when X, 1s unbounded) L.+, « L,

(12) F, lies to the left of Ae1viry (Figure 3(b)) In this case K,+1 < K, but F, and L, must be updated To
determine F..,, we scan K, counterclockwise from F, until we find a vertex w, of K, such that wy,, hes to
the night of v+ (v, 1w:)A, we then set F..; « w, The determination of L.+, 1s the same as 1n case (1 1)

(2) Vertex v, 15 convex (see Figures 4(a, b))

\
Li+1

FiG 4 General step when v, 1s convex

418 D. T. LEE AND F. P. PREPARATA

Q1) L, hes on or to the nght of vie.uA (Frgure 4(a)). We scan the boundary of K, clockwise from L, until
either we reach a unique edge (w,-,w;) intersecting v.e,.s1A or we reach F, without finding such an edge.
In the latter case, we termunate the algorithm (K(P) = &). In the former case, we take the following
actions’

(1) We find the intersection w’ of (w,—,w:) and v,e..1A.

(ii) We scan the boundary of K, counterclockwise from L, unul either we reach an edge (w,-iw;)
tntersecung v A at point w” (guaranteed if X, is bounded) or (only when X, 1s unbounded)
we reach the hist tail without finding such an edge. Letting K, = aw-+«w,-1, 1n the first case
we let K,.1 < aw’e,.,w”B; 1n the second case (K, is unbounded) we must test whether K.
1s bounded or unbounded If the slope of v.e.«1A 15 comprised between the slopes of the
mtial and final half-lines of K, then K.+1 « aw’e.iA 15 also unbounded Otherwise we
begin scanning the boundary of K, counterclockwise from the list head until an edge (w,-,w»)
1s found which intersects v.e..1A at a pomnt w”; letting K, = yw,_:.dwm we set Ky «
Sw’e,saw” and the hist becomes circular

The selections of F,+; and L., depend upon ihe posttion of v,+; on the half-hne v.e,;A and upon
whether v.e... A has one or two mntersections with X, We distingussh these two cases
(2 1.1) viesaA mtersects K, i w’ and w”. If vy € [vie.iw’] then Fiiy 1s selected as n case (12)

Otherwise F,.y1s set to w’ If v,y € [v.e..1w”] then L. 15 set to w” Otherwise L..i 15 selected

as mn case (1 1) except that we scan K., counterclockwise from w”.

(2.12) view:A intersects K, 1n just w'. If vi4y € [vieiw’], Fiex 18 selected as in case (1 2), otherwise Fisy

«w’ L1 15 set to the point at infinity of vie.iA

(22) L, hes to the left of v.e..iA (Figure 4(b)) In this case Kivy <« K, Fiyy 15 determined as mn (12) If K, 1s
bounded then L.+, 1s determined as in case (1 1), otherwise L+ <~ L,

The correctness of the algorithm is asserted by the following lemma, where we let H,
denote the half-plane lying to the left of line AeA.

LemMa 1. The polygon K..1 is the intersection of Ho, Hh, ... , Hui for i =0, 1, ...,
n—2.

PrOOF. By induction. Notice that K, is by definition the intersection of H, and H,
(initial step of the algorithm). Assume inductively that K, = Hy N H, N ... N H,. Then in
all cases contemplated in the general step we constructively intersect K, and H.+,, thereby
establishing the claim. 0O

While Lemma 1 guarantees that the algorithm correctly constructs K(P), a minor but
important modification of the general step is needed in order to achieve efficiency. In fact,
there could be polygons P, with K(P) = @, for which ime O(n®) could be used before
termination. This can be avoided by an additional test based on the following properties
of kernels.

LeEMMA 2. Let P be a simple polygon and suppose that K(P) # O. For any points p €
K(P) and u on the boundary of P, the segment (pu) is contained in P.

Proor. Let u belong to edge ¢, = (v,-1v)) of P, and consider the triangle (pv,—1v,) (Figure
5). Assume the segment (pu) is not contained in P, and let ¢ be a point of (pu) external to
P. Then there are two edges, e; and e,, of the boundary of P which cross (pu) on opposite
sides of ¢. Since p € K(P), no edge of P crosses either (pv,-1) or (pv,) except possibly at v,
or v, respectively. Since the boundary of P is a single cycle, e, and e- belong to a chain C
of edges between v, and v,-;. But Ce is closed; hence it coincides with the boundary of P

v
)

e

lu

Vj'l

p
Fic 5 If p € K(P) no pont of (pu) 1s external to P

An Optimal Algorithm for Finding the Kernel of a Polygon 419

since P is simple; moreover, P C (pv,-1v,). Also, by the simplicity of P, both (pv;) and
(pv,-1) cannot belong to Ce;; hence, at least one of them 1s external to P, a contradiction. (I

Now consider the two lines of support of K, through vertex v, of P (Figure 6). Let f and
[be the two half-lines of these lines containing the points of support, named so that the
clockwise angle from f'to / is convex. Also let f* be the segment between v, and the point
of support farthest from vo, and let f be the complementary half-line of £2 /* and I are
sumilarly defined.

THEOREM 1. Suppose that K,.. is nonempty and that e..., crosses either I* or f, with v,.,
in the convex wedge delimited by f and I (crosshatched in Figure 6); then K(P) = &.

ProOOF. Suppose that e.+; crosses /* (Figure 6(a)); then we claim that the boundary of
P separates K., from vo. Indeed, this is obvious if e, crosses both f* and I*. If not (1 e. v,
is in the wedge bounded by f and /), the boundary of P cannot cross /* more than once;
otherwise K.+, would lie on the right of some edge Ae.A (s < i) and would therefore be
empty. Suppose now K(P) # & and let p be a pont 1n K(P), obviously p € Ki+,, and the
segment (pvo) is entirely contained 1n P. But (pvo) crosses the boundary of P, whence a
contradiction and K(P) = .

Assume now that e,.; crosses f (Figure 6(b)); then we claim that the boundary of P cuts
the convex wedge delimited by / and f. Indeed, this is obvious if e.+; crosses both fand
if not (re. v, is inside the wedge bounded by f and 7), the boundary of P cannot cross f
more than once, by the same argument given above. Suppose now K(P) # &, with p €
K(P) C K.+1; then the half-line p(pvo)A reaches the boundary of P within the above wedge
in a point u. But, by Lemma 2, the segment (pu) must be contained in P, however, since
it crosses its boundary at v, we have a contradiction and K(P) = <. [

Therefore we shall modify the general step of the algorithm by adding the following
additional operations (test and update): (1) Before determining Ki+1, Fi+1, and Liyy: If .44
crosses either I* or f, with v..; 1 the convex wedge delimited by fand /, terminate the
algorithm with K(P) = &. (2) In cases (1.1) and (2.1), after determining K11, Fi4y, and L,.1:
Let F*, L* be points of support on f and /, respectively. Imtially, since K, is AeivoeoA, F*
and L* are set to points at infinity of Aeivo and voerAA, respectively. If in obtaining K.+,
from K, the vertices F'* and/or L* are deleted, we update them accordingly as follows (of
course only the required updates are performed): (i) v, is reflex. F* < w’, L* «—w" if v,
hes to the left of Ae.v1v41 and F* « w”, L* « w’ otherwise. (ii) v, is convex. F* «
w”, L* « w’ if v lies to the left of vie,. A and F* « w’, L* « w” otherwise. Note that
w’, w” are determined in cases (1 1) and (2 1), and that if w” does not exist, its place is
taken by the point at infinity of the half-line being considered.

\F

W
\ 2 *

K|+l
a b

Fi6 6 Ilustrations for the proof of Theorem 1

420 D. T LEE AND F. P. PREPARATA

We say that K, for s = i, ... , n — 1, is vacuous if the above test fails when processing
edge e.. We have the following corollary:

COROLLARY 1. Suppose K, is not vacuous and let p be any point in K, Also let o, be the
interior angle at p in the triangle (pv,-1v,), positive if (pv,) follows (pv,-1) counterclockwise,
Jorj=1, .., i Then we claim that ¥ ;-1 a, < 3m.

PrOOF. Suppose that } -1, = 37. This means that the boundary of P, starting at vo,
wraps around p € K, as shown either in Figure 7(a) or in Figure 7(b). In both cases, KX, is
bounded. In the first case the boundary of P crosses / in at least two points, each on
opposite sides of the point(s) of support; in the second case, the boundary of P makes a full
turn around vo and must therefore cross f. In either case, the additional test described
above will fail, contrary to the hypothesis that K, is not vacuous. [J

3. Performance Analysis

It 15 convenient to analyze separately the two basic types of actions performed by the
kernel algorithm. The first concerns updating the kernel, by intersecting K, with Ae,..1A to
obtain K,.; the second concerns updating F, and L, and consists of counterclockwise or
Sforward scans of K, to obtain the new vertices of support (note however that in some cases,
as (1.1) and (2.1), the update of K, implicitly yields updates for one or the other of the
support vertices).

We begin by considering intersection updates. In case (1.1) (when the algorithm does
not terminate), we scan K, starting from F, both clockwise and counterclockwise (this scan
also finds F.41). Let », be the total number of edges visited before finding the two
intersections w’ and w”. This process actually removes », — 2 edges from K, (those
comprised between w, and w,; in Figure 3(a)), and since each of the removed edges is
collinear with a distinct edge of P, we have Y (v, — 2) < n. Thus }», the total number of
vertices visited by the algorithm in handling case (1.1), is bounded above by 3n, 1e. it is
O(n). The same argument, with insignificant modifications, can be made for case (2.1).

Next, we consider those updates of the support vertices F and L which are not implicitly
accomphished 1n the intersection process. These updates occur for L 1n all cases (1.1), (1.2),
(2.1), and (2.2), and for Fin cases (1.2) and (2.2). Note that 1n all of these cases the vertices
of support advance on the boundary of K.. Let us consider, for example, the update of L
1n case (1.1); the other cases can be treated analogously. Consider the set of edges of K.+,
which the algorithm visits before determining L..:; the visit to the edge immediately
following L.+ is referred to as an overshoot. It 1s immediately realized that in handling
case (1.1) the number of overshoots is globally O(n), since there is at most one overshoot
per vertex of P. Next, we claim that, ignoring overshoots, any edge is visited at most twice.
In fact, assume that, when processing v, an edge 1s being visited for the third time. Because

Fic 7 [Hlustrations for the proof of Corollary 1

An Optimal Algorithm for Finding the Kernel of a Polygon 421

of the forward scan feature, this imples that the boundary of P wraps around K. at least
twice, i.e. there is some point ¢ € K, for which the construction of Corollary 1 yields Ya,
= 4, contrary to Corollary 1.

Thus the work performed 1n handling case (1.1)—as well as cases (1.2), (2.1), and (2.2)—
is O(n). Finally, the updates of F* and L* are all accomplished implicitly in finding w’
and w”. Therefore, we conclude that the entire algorithm runs in time proportional to the
number of vertices of P and is optimal to within a constant factor.

ACKNOWLEDGMENT. The authors thank their referees for extremely pertinent and valua-
ble suggestions which have substantially improved the quality of this paper.

REFERENCES

1 Suamos, MI, AND Hoey, D Geometric intersection problems 17th Annual Symp on Foundations of
Computer Science, Houston, Tex, Oct 1976, pp 208-215 (IEEE)

RECEIVED MAY 1977, REVISED JANUARY 1978

Journal of the A for C g Machinery, Vol 26, No 3, July 1979

P

