CourseWare Wiki
Switch Term
Summer 2023 / 2024
Summer 2021 / 2022
Summer 2020 / 2021
Summer 2019 / 2020
Summer 2018 / 2019
Older
Search
Log In
b192
courses
xep33sml
materials
lectures
Warning
This page is located in archive. Go to the latest version of this
course pages
. Go the latest version of
this page
.
Syllabus
Lect.
Lecturer
Topic
Pdf
Additional reading
01
BF
Markov Random Fields & Gibbs Random Fields
02
BF
The most probable realisation of a GRF
[Savchynskyy19]
03
BF
Belief Networks & Stochastic Neural Networks
[Neal92]
,
Rezende, 2014
,
Kingma, 2013
04
VF
Empirical Risk Minimization
, print
[Domke10]
[Agarwal11]
[Balcan11]
05
VF
Structured Output Linear Classifier and Perceptron
, print
[Collins02]
Peceptron proof
06
VF
Learning max-sum classifier by Perceptron
, print
[Franc08]
07
VF
Structured Output Support Vector Machines
, print
[Tsochantaridis05]
08
VF
Cutting Plane Algorithm
, print
[Teo09]
09
VF
Learning Max-Sum classifier by SO-SVM
, print
[Taskar04]
[Taskar04]
[Franc08]
10
BF
Maximum Likelihood learning for MRFs I
[Fujishige (book)]
,
[Zhang2015]
11
BF
Maximum Likelihood learning for MRFs II
12
BF
Variational Bayesian inference for DNNs
13
BF
Variational Autoencoders
[Doersch2016]
14
BF
Generative adversarial networks
[Arjovsky2017]
courses/xep33sml/materials/lectures.txt
· Last modified: 2020/06/01 18:16 by
flachbor