Warning
This page is located in archive. Go to the latest version of this course pages. Go the latest version of this page.

Syllabus

Lect. Lecturer Topic Pdf Additional reading
01 BF Markov Random Fields & Gibbs Random Fields
02 BF The most probable realisation of a GRF [Savchynskyy19]
03 BF Belief Networks & Stochastic Neural Networks [Neal92], Rezende, 2014, Kingma, 2013
04 VF Empirical Risk Minimization , print [Domke10] [Agarwal11] [Balcan11]
05 VF Structured Output Linear Classifier and Perceptron , print [Collins02] Peceptron proof
06 VF Learning max-sum classifier by Perceptron , print [Franc08]
07 VF Structured Output Support Vector Machines , print [Tsochantaridis05]
08 VF Cutting Plane Algorithm , print [Teo09]
09 VF Learning Max-Sum classifier by SO-SVM , print [Taskar04] [Taskar04] [Franc08]
10 BF Maximum Likelihood learning for MRFs I [Fujishige (book)], [Zhang2015]
11 BF Maximum Likelihood learning for MRFs II
12 BF Variational Bayesian inference for DNNs
13 BF Variational Autoencoders [Doersch2016]
14 BF Generative adversarial networks [Arjovsky2017]
courses/xep33sml/materials/lectures.txt · Last modified: 2020/06/01 18:16 by flachbor