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Structured Output Prediction: the statistical model

The setting

� X set of input observations

� Y finite set of hidden states, e.g.

• Flat classification: Y = {1, . . . ,K}

• Structured classif.: Y = Y1 × · · · × Y|V| is a labeling of parts V.

� (x, y) ∈ X × Y randomly drawn from r.v. with p.d.f. p(x, y)

� ` : Y × Y → [0,∞) loss function
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Structured Output Prediction: the statistical model

The setting

� X set of input observations

� Y finite set of hidden states, e.g.

• Flat classification: Y = {1, . . . ,K}

• Structured classif.: Y = Y1 × · · · × Y|V| is a labeling of parts V.

� (x, y) ∈ X × Y randomly drawn from r.v. with p.d.f. p(x, y)

� ` : Y × Y → [0,∞) loss function

The task: find a strategy h : X → Y with the minimal expected risk

R∗ = min
h : X→Y

R(h) where R(h) = E(x,y)∼p[`(y, h(x))]
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Solving the prediction problem from examples

� Assumption: we have an access to examples

{(x1, y1), (x2, y2), . . .}

drawn from i.i.d. r.v. distributed according to unknown p(x, y).

http://cmp.felk.cvut.cz


3/16
Solving the prediction problem from examples

� Assumption: we have an access to examples

{(x1, y1), (x2, y2), . . .}

drawn from i.i.d. r.v. distributed according to unknown p(x, y).

� a) Testing: Estimate R(h) of a given h : X → Y using test set

Sl = {(xi, yi) ∈ (X × Y) | i = 1, . . . , l}

drawn i.i.d. from p(x, y).
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� Assumption: we have an access to examples

{(x1, y1), (x2, y2), . . .}

drawn from i.i.d. r.v. distributed according to unknown p(x, y).

� a) Testing: Estimate R(h) of a given h : X → Y using test set

Sl = {(xi, yi) ∈ (X × Y) | i = 1, . . . , l}

drawn i.i.d. from p(x, y).

� b) Learning: find h : X → Y with small R(h) using training set

T m = {(xi, yi) ∈ (X × Y) | i = 1, . . . ,m}

drawn i.i.d. from p(x, y).
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Estimation of the expected risk from examples

� Given a predictor h : X → Y, compute the empirical risk

RSl(h) =
1

l

l∑
i=1

`(yi, h(xi))

and use it as a proxy for R(h) = E(x,y)∼p(`(y, h(x))).

� The value of the empirical risk RSl(h) is a random number.

� Application of Hoeffding inequality: for any ε > 0 the probability of
seeing a “bad test set” can be bound by

PSl∼p
(∣∣∣RSl(h)−R(h)∣∣∣ ≥ ε) ≤ 2e

− 2l ε2

(`min−`max)2
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Learning algorithm

� Learning: find a strategy h : X → Y with a small R(h) using the
training set of examples

T m = {(xi, yi) ∈ (X × Y) | i = 1, . . . ,m}

drawn from i.i.d. according to unknown p(x, y).

� Use prior knowledge to select hypothesis space

H ⊆ YX = {h : X → Y}

� The learning algorithm

A : ∪∞m=1 (X × Y)m→ H

selects strategy hm = A(T m) based on the training set T m.
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Generative learning (to come later)

1. Use the training set T m = {(xi, yi) ∈ X × Y | i ∈ {1, . . . ,m}} to
approximate p(x, y) by p̂(x, y).

For example, use the Maximum-Likelihood method:

(a) Guess the shape of the distribution, e.g.

p̂w(x, y) =
1

Z(w)
exp〈w,φ(x, y)〉 , w ∈ W

(b) Find the ML estimate

wm ∈ argmax
w∈W

m∑
i=1

log p̂w(xi, yi)

2. Construct a plug-in classifier

hm(x) ∈ argmin
h : X→Y

E(x,y)∼p̂wm
[`(y, h(x))]
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Discriminative learning by Empirical Risk Minimization

� Use the training set T m = {(xi, yi) ∈ X × Y | i ∈ {1, . . . ,m}} to
approximate the expected risk R(h) by the empirical risk

RT m(h) =
1

m

m∑
i=1

`(yi, h(xi))

� The ERM learning algorithm returns hm such that

hm ∈ Argmin
h∈H

RT m(h) (1)

� Depending on the choice of H, ` and algorithm solving (1) we get
individual instances, e.g.: Structured-Output Perceptron,
Structured-Output Support Vector Machines, Logistic regression, Neural
Networks learned by back-propagation, AdaBoost, . . . .
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Errors characterizing a learning algorithm

The characters of the play:

� R∗ = minh∈YX R(h) best attainable (Bayes) risk

� R(hH) best risk in H; hH ∈ Argminh∈HR(h)

� R(hm) risk of hm = A(Tm) learned from T m
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Errors characterizing a learning algorithm

The characters of the play:

� R∗ = minh∈YX R(h) best attainable (Bayes) risk

� R(hH) best risk in H; hH ∈ Argminh∈HR(h)

� R(hm) risk of hm = A(Tm) learned from T m

Excess error: the quantity we want to minimize(
R(hm)−R∗

)
︸ ︷︷ ︸
excess error

=

(
R(hm)−R(hH)

)
︸ ︷︷ ︸
estimation error

+

(
R(hH)−R∗

)
︸ ︷︷ ︸

approximation error
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Errors characterizing a learning algorithm

The characters of the play:

� R∗ = minh∈YX R(h) best attainable (Bayes) risk

� R(hH) best risk in H; hH ∈ Argminh∈HR(h)

� R(hm) risk of hm = A(Tm) learned from T m

Excess error: the quantity we want to minimize(
R(hm)−R∗

)
︸ ︷︷ ︸
excess error

=

(
R(hm)−R(hH)

)
︸ ︷︷ ︸
estimation error

+

(
R(hH)−R∗

)
︸ ︷︷ ︸

approximation error

� The excess and the estimation error are random variables

� The estimation error depends on m and H

� The approximation error depends on H (so called inductive bias)
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Statistically consistent learning algorithm

Definition 1. The algorithm A : ∪∞m=1 (X × Y)m→ H is statistically
consistent in H ⊆ YX w.r.t. p(x, y) if for every ε > 0 and δ ∈ (0, 1) there
exist m0 ∈ N such that

PT m∼p
(
R(A(T m))−R(hH) ≥ ε

)
≤ 1− δ

holds for every m ≥ m0.

If A is consistent for any p(x, y) then A is universally consistent in H.
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Statistically consistent learning algorithm

Definition 1. The algorithm A : ∪∞m=1 (X × Y)m→ H is statistically
consistent in H ⊆ YX w.r.t. p(x, y) if for every ε > 0 and δ ∈ (0, 1) there
exist m0 ∈ N such that

PT m∼p
(
R(A(T m))−R(hH) ≥ ε

)
≤ 1− δ

holds for every m ≥ m0.

If A is consistent for any p(x, y) then A is universally consistent in H.

Question:

� Is the ERM learning algorithm statistically consistent ?
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Example: ERM is not consistent H is unconstrained

� Let X = [a, b] ⊂ R, Y = {+1,−1}, `(y, y′) = [[y 6= y′]], p(x | y = +1)

and p(x | y = −1) be uniform distributions on X and p(y = +1) = 0.8.
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� Let X = [a, b] ⊂ R, Y = {+1,−1}, `(y, y′) = [[y 6= y′]], p(x | y = +1)

and p(x | y = −1) be uniform distributions on X and p(y = +1) = 0.8.

� The optimal strategy is h(x) = +1 with the Bayes risk R∗ = 0.2.
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Example: ERM is not consistent H is unconstrained

� Let X = [a, b] ⊂ R, Y = {+1,−1}, `(y, y′) = [[y 6= y′]], p(x | y = +1)

and p(x | y = −1) be uniform distributions on X and p(y = +1) = 0.8.

� The optimal strategy is h(x) = +1 with the Bayes risk R∗ = 0.2.

� Consider learning algorithm which for a given training set
T m = {(x1, y1), . . . , (xm, ym)} returns strategy

hm(x) =

{
yj if x = xj for some j ∈ {1, . . . ,m}
−1 otherwise
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Example: ERM is not consistent H is unconstrained

� Let X = [a, b] ⊂ R, Y = {+1,−1}, `(y, y′) = [[y 6= y′]], p(x | y = +1)

and p(x | y = −1) be uniform distributions on X and p(y = +1) = 0.8.

� The optimal strategy is h(x) = +1 with the Bayes risk R∗ = 0.2.

� Consider learning algorithm which for a given training set
T m = {(x1, y1), . . . , (xm, ym)} returns strategy

hm(x) =

{
yj if x = xj for some j ∈ {1, . . . ,m}
−1 otherwise

� The empirical risk is RT m(hm) = 0 with probability 1 for any m.

� The expected risk is R(hm) = 0.8 for any m.
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Uniform Law of Large Numbers

Definition 2. The hypothesis space H ⊆ YX satisfies the uniform law of
large numbers if for every distributon p(x, y), ε > 0 and δ ∈ (0, 1) there
exists m0 ∈ N such that

PT m∼p
(
sup
h∈H

∣∣∣R(h)−RT m(h)∣∣∣ ≥ ε) ≤ 1− δ

holds for every m ≥ m0.
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Uniform Law of Large Numbers

Definition 2. The hypothesis space H ⊆ YX satisfies the uniform law of
large numbers if for every distributon p(x, y), ε > 0 and δ ∈ (0, 1) there
exists m0 ∈ N such that

PT m∼p
(
sup
h∈H

∣∣∣R(h)−RT m(h)∣∣∣ ≥ ε) ≤ 1− δ

holds for every m ≥ m0.

Theorem 1. If H satisfies ULLN then ERM is statistically consistent in H.
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Proof: ULLN implies consistency of ERM

For fixed T m and hm ∈ Argminh∈HRT m(h) we have:

R(hm)−R(hH) =
(
R(hm)−RT m(hm)

)
+

(
RT m(hm)−R(hH)

)
≤
(
R(hm)−RT m(hm)

)
+

(
RT m(hH)−R(hH)

)
≤ 2 sup

h∈H

∣∣∣∣R(h)−RT m(h)∣∣∣∣
Therefore ε ≤ R(hm)−R(hH) implies ε2 ≤ suph∈H

∣∣∣∣R(h)−RT m(h)∣∣∣∣ and
P
(
R(hm)−R(hH) ≥ ε

)
≤ P

(
sup
h∈H

∣∣∣∣R(h)−RT m(h)∣∣∣∣ ≥ ε

2

)
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Two examples of H which satisfy ULLN

1. H is a finite set and ` : Y × Y → [`min, `max]. Then,

PT ∼pm
(
max
h∈H

∣∣∣∣R(h)−RT m(h)∣∣∣∣ ≥ ε) ≤ 2|H| exp
(

−2mε2

(`max − `min)2

)
holds for any ε > 0 and m ∈ N .
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Two examples of H which satisfy ULLN

1. H is a finite set and ` : Y × Y → [`min, `max]. Then,

PT ∼pm
(
max
h∈H

∣∣∣∣R(h)−RT m(h)∣∣∣∣ ≥ ε) ≤ 2|H| exp
(

−2mε2

(`max − `min)2

)
holds for any ε > 0 and m ∈ N .

2. `(y, y′) = [[y 6= y′]], Y = {+1,−1} and VC-dimension of H is finite.
VC-dimension d of H is the maximal number of inputs which can be
classified by strategies from H in all possible (that is 2d) ways. Then,

PT ∼pm
(
sup
h∈H

∣∣∣R(h)−RT m(h)∣∣∣ ≥ ε) ≤ 4

(
2 em

d

)d
e−

m ε2

8
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Rademacher Complexity

� Let z = (x, y) ∈ Z = X × Y, p(z) = p(x, y) and g(z) = `(y, h(x)).
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Rademacher Complexity

� Let z = (x, y) ∈ Z = X × Y, p(z) = p(x, y) and g(z) = `(y, h(x)).

Definition 3. Let G ⊆ [a, b]Z be a set of functions g : Z → [a, b] where
a, b ∈ R and a < b. Let Um = {z1, . . . , zm} ∈ Zm be drawn i.i.d. from p(z).
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Rademacher Complexity

� Let z = (x, y) ∈ Z = X × Y, p(z) = p(x, y) and g(z) = `(y, h(x)).

Definition 3. Let G ⊆ [a, b]Z be a set of functions g : Z → [a, b] where
a, b ∈ R and a < b. Let Um = {z1, . . . , zm} ∈ Zm be drawn i.i.d. from p(z).

The empirical Rademacher complexity of G w.r.t. to the sample Um is

R̂m(G,Um) = Eσ∼Unif{−1,+1}

[
sup
g∈G

1

m

m∑
i=1

σi g(zi)

]
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Rademacher Complexity

� Let z = (x, y) ∈ Z = X × Y, p(z) = p(x, y) and g(z) = `(y, h(x)).

Definition 3. Let G ⊆ [a, b]Z be a set of functions g : Z → [a, b] where
a, b ∈ R and a < b. Let Um = {z1, . . . , zm} ∈ Zm be drawn i.i.d. from p(z).

The empirical Rademacher complexity of G w.r.t. to the sample Um is

R̂m(G,Um) = Eσ∼Unif{−1,+1}

[
sup
g∈G

1

m

m∑
i=1

σi g(zi)

]

The Rademacher complexity of G w.r.t. distribution p(z) is

Rm(G) = EUm∼pm(z)

[
R̂m(G,Um)

]
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Rademacher-based uniform convergence

� Let G ⊆ [a, b]Z be a set of functions. Then, for every δ ∈ (0, 1)

sup
g∈G

∣∣∣∣Ez∼p(g(z))− 1

m

m∑
i=1

g(zi)

∣∣∣∣ ≤ 2 Rm(G) + (b− a)
√

log 2/δ

2m

holds with probability 1− δ at least, w.r.t. Um = {z1, . . . , zm} ∼ pm(z).
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Rademacher-based uniform convergence

� Let G ⊆ [a, b]Z be a set of functions. Then, for every δ ∈ (0, 1)

sup
g∈G

∣∣∣∣Ez∼p(g(z))− 1

m

m∑
i=1

g(zi)

∣∣∣∣ ≤ 2 Rm(G) + (b− a)
√

log 2/δ

2m

holds with probability 1− δ at least, w.r.t. Um = {z1, . . . , zm} ∼ pm(z).

� For every δ ∈ (0, 1)

sup
g∈G

∣∣∣∣Ez∼p(g(z))− 1

m

m∑
i=1

g(zi)

∣∣∣∣ ≤ 3 R̂m(G,Um) + (b− a)
√

log 4/δ

2m

holds with probability 1− δ at least, w.r.t. Um = {z1, . . . , zm} ∼ pm(z).
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Example: Rademacher complexity of linear functions

� Assume that X ⊆ Rn and p(x, y) is such that ‖x‖ ≤ R.

� Assume that
G =

{
ψ(〈w,x〉, y) | ‖w‖2 ≤ B

}
where ψ : R× Y → R is such that f(t) = ψ(t, y) is ρ-Lipschitz
continuous for all y ∈ Y.
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Example: Rademacher complexity of linear functions

� Assume that X ⊆ Rn and p(x, y) is such that ‖x‖ ≤ R.

� Assume that
G =

{
ψ(〈w,x〉, y) | ‖w‖2 ≤ B

}
where ψ : R× Y → R is such that f(t) = ψ(t, y) is ρ-Lipschitz
continuous for all y ∈ Y.

E.g. ψ(t, y) = max{0, 1− t y} and ψ(t) = |t− y| are 1-Lipschitz.
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Example: Rademacher complexity of linear functions

� Assume that X ⊆ Rn and p(x, y) is such that ‖x‖ ≤ R.

� Assume that
G =

{
ψ(〈w,x〉, y) | ‖w‖2 ≤ B

}
where ψ : R× Y → R is such that f(t) = ψ(t, y) is ρ-Lipschitz
continuous for all y ∈ Y.

E.g. ψ(t, y) = max{0, 1− t y} and ψ(t) = |t− y| are 1-Lipschitz.

� Then,
R̂m(G) ≤

ρB R√
m

� We can also compute

b = max
t∈[−BR,BR]

ψ(t, y) and a = min
t∈[−BR,BR]

ψ(t, y)
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