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® Learning by Bayesian inference

® Variational Bayesian inference
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Empirical risk minimisation:
¢ The best attainable (Bayes) risk is R* = inf; .y,x R(h)
¢ The best predictor in H is hyy € argming, o4, R(h)
¢ The predictor h,, learned from 7™ has risk R(h,,)

(R(hm) — R*)J = \(R(hm) — R(hH)> + (R(hH) — R*>/

~~ ~~

€XCess error estimation error approximation error

¢ Misspecified hypothesis space H = high approximation error

¢ Size of 7™ too small = high estimation error

Maximum likelihood estimate: similar
¢ Misspecified model class pg(x,y), 0 € ©

¢ Size of 7™ too small

Small amount of training data: can we avoid to choose one h,,, or to decide for one 6*7
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Interpret the unknown parameter 8 € © as a random variable
¢ Model class p(z,y | 6), 0 € ©
¢ Prior distribution p(#) on ©
¢ Prediction strategy h: X — )
¢ Aloss function /: Y x Y — R

Given training data 7™ = {(z%,y%) | i =1,...,m} compute the posterior probability to
observe a pair (z,y) by marginalising over 6 € O:

pla,y | T™) = / p(T™ | 6) plz.y | 6) p(6) db

©

p(T™)

Notice that a point estimate of 6 is no longer needed!

Define the Bayes risk of a strategy h by

R(h, T™) o 3 / p(T™ | 0) pla,y | 0) p(8) Ly, h(x)) dO

x,Yy @
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For 0-1 loss this leads to the predictor

b, T") = argmax [ p(6) p(T™ | 6) pla.y |6) db = argmax [ a(0) ply | 2.6) ds
yey o N~ \(fe) 4 yey

which means to find the optimal predictor for a model mixture.

Notice how the posterior distribution

(@) =p@|T™)ccp(T™]0)p0)

interpolates between the situation without any training data, i.e. m = 0 and the likelihood of
training data for m — oc.
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¢ Computing integrals like

[ o 16)(0) dt
e
is in most cases not tractable.

¢ Approximate p(f | T™) by some simple distribution gz(#) and find the optimal
parameter S by minimising the Kullback-Leibler divergence

~KL(gs(0) | (6] T™)) = /@ a5(6) log p(T™ | 6) 8 — K L(gs(0) || p(6)) + ¢ — max

¢ use g3(0) with optimal g for prediction

h(z) = arg;naXZ/qzs(@ p(z,y | 0) Ly, y) db
v o

The integrals over 6 can be further simplified by sampling from ¢3(6)

| as0) 1@ do~ -3 116
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Variational Bayesian inference

Example 1. Consider the optimisation task

for following examples
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¢ p(0) - uniform, gp,(0) = 6(0 — 0y), i.e. point estimate = 0y = arg max, log p(7™ | 0)

i.e., MLE.
® p(0) - N(0,0%), qo,(0) = 6(0 — ), i.e. point estimate =

0o = arg max [10gp(7'm | 0) + )\HHHQ]
0

¢ p(8) - N(0,03), qs(0) - N(u,0%)

2

_ 1 _(g_ 1r0?
e 207 “)2logp(7'm|«9) d@——{a +2,u

— In 0] — max
2 o

0o

V2mo?
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Consider a stochastic layered neural network.

2

¢ assume a factorising prior distribution for its weights p(w) ~ [[;;cpe %0

2
 (wii—n45)

¢ approximate the posterior distribution p(w | 7™) as q(w) ~ HUEE e 20,

The task

arg max/qu,a(w) logp(T™ | w) dw — KL(qu (w) || p(w)) =

o
g max Y [ g0(w) log () | o) dw — KL(g.a(w) | p(w)
K,o j=1

can be solved e.g. as follows.
® The likelihood integral is approximated by a sample of w.

¢ The maximisation is done by stochastic backpropagation, utilising the reparametrisation
trick: w ~ N (u, o) is equivalent to w = oz + p with z ~ AM(0,1) (see lecture 3).
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