Structured Model Learning Bayesian inference

Boris Flach Czech Technical University in Prague

- Learning by Bayesian inference
- Variational Bayesian inference

When ERM and MLE fail

- The best attainable (Bayes) risk is $R^* = \inf_{h \in \mathcal{Y}^{\mathcal{X}}} R(h)$
- The best predictor in \mathcal{H} is $h_{\mathcal{H}} \in \arg\min_{h \in \mathcal{H}} R(h)$
- The predictor h_m learned from \mathcal{T}^m has risk $R(h_m)$

$$\underbrace{\left(R(h_m) - R^*\right)}_{\text{excess error}} = \underbrace{\left(R(h_m) - R(h_{\mathcal{H}})\right)}_{\text{estimation error}} + \underbrace{\left(R(h_{\mathcal{H}}) - R^*\right)}_{\text{approximation error}}$$

- lacktriangle Misspecified hypothesis space ${\cal H} \Rightarrow$ high approximation error
- lacktriangle Size of \mathcal{T}^m too small \Rightarrow high estimation error

Maximum likelihood estimate: similar

- Misspecified model class $p_{\theta}(x,y)$, $\theta \in \Theta$
- Size of \mathcal{T}^m too small

Small amount of training data: can we avoid to choose one h_m , or to decide for one θ^* ?

Bayesian inference

Interpret the unknown parameter $\theta \in \Theta$ as a random variable

- Model class $p(x, y \mid \theta)$, $\theta \in \Theta$
- Prior distribution $p(\theta)$ on Θ
- Prediction strategy $h: \mathcal{X} \to \mathcal{Y}$
- lacktriangle A loss function $\ell \colon \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$

Given training data $\mathcal{T}^m = \{(x^i, y^i) \mid i = 1, \dots, m\}$ compute the posterior probability to observe a pair (x, y) by marginalising over $\theta \in \Theta$:

$$p(x, y \mid \mathcal{T}^m) = \frac{1}{p(\mathcal{T}^m)} \int_{\Theta} p(\mathcal{T}^m \mid \theta) \ p(x, y \mid \theta) \ p(\theta) \ d\theta$$

Notice that a point estimate of θ is no longer needed!

Define the Bayes risk of a strategy h by

$$R(h, \mathcal{T}^m) \propto \sum_{x,y} \int_{\Theta} p(\mathcal{T}^m \mid \theta) p(x,y \mid \theta) p(\theta) \ell(y,h(x)) d\theta$$

Bayesian inference

For 0-1 loss this leads to the predictor

$$h(x, \mathcal{T}^m) = \underset{y \in \mathcal{Y}}{\operatorname{arg \, max}} \int_{\Theta} \underbrace{p(\theta) \ p(\mathcal{T}^m \mid \theta)}_{\alpha(\theta)} \ p(x, y \mid \theta) \ d\theta = \underset{y \in \mathcal{Y}}{\operatorname{arg \, max}} \int_{\Theta} \alpha(\theta) \ p(y \mid x, \theta) \ d\theta$$

which means to find the optimal predictor for a model mixture.

Notice how the posterior distribution

$$\alpha(\theta) = p(\theta \mid \mathcal{T}^m) \propto p(\mathcal{T}^m \mid \theta) p(\theta)$$

interpolates between the situation without any training data, i.e. m=0 and the likelihood of training data for $m\to\infty$.

Variational Bayesian inference

Computing integrals like

$$\int_{\Theta} p(\mathcal{T}^m \mid \theta) \ p(\theta) \ d\theta$$

is in most cases not tractable.

• Approximate $p(\theta \mid \mathcal{T}^m)$ by some simple distribution $q_{\beta}(\theta)$ and find the optimal parameter β by minimising the Kullback-Leibler divergence

$$-KL(q_{\beta}(\theta) \parallel p(\theta \mid \mathcal{T}^{m})) = \int_{\Theta} q_{\beta}(\theta) \log p(\mathcal{T}^{m} \mid \theta) d\theta - KL(q_{\beta}(\theta) \parallel p(\theta)) + c \to \max_{\beta}$$

• use $q_{\beta}(\theta)$ with optimal β for prediction

$$h(x) = \arg\max_{y} \sum_{y'} \int_{\Theta} q_{\beta}(\theta) p(x, y \mid \theta) \ell(y', y) d\theta$$

The integrals over θ can be further simplified by sampling from $q_{\beta}(\theta)$

$$\int_{\Theta} q_{\beta}(\theta) f(\theta) d\theta \approx \frac{1}{m} \sum_{i=1}^{n} f(\theta_i)$$

Variational Bayesian inference

Example 1. Consider the optimisation task

$$\int_{\Theta} q_{\beta}(\theta) \log p(\mathcal{T}^m \mid \theta) d\theta - KL(q_{\beta}(\theta) \parallel p(\theta)) \to \max_{\beta}$$

for following examples

- $p(\theta)$ uniform, $q_{\theta_0}(\theta) = \delta(\theta \theta_0)$, i.e. point estimate $\Rightarrow \theta_0 = \arg\max_{\theta} \log p(\mathcal{T}^m \mid \theta)$ i.e., MLE.
- $p(\theta)$ $\mathcal{N}(0, \sigma_0^2)$, $q_{\theta_0}(\theta) = \delta(\theta \theta_0)$, i.e. point estimate \Rightarrow

$$\theta_0 = \arg\max_{\theta} \left[\log p(\mathcal{T}^m \mid \theta) + \lambda \|\theta\|^2 \right]$$

 $lack p(\theta)$ - $\mathcal{N}(0,\sigma_0^2)$, $q_\beta(\theta)$ - $\mathcal{N}(\mu,\sigma^2)$

$$\frac{1}{\sqrt{2\pi\sigma^2}} \int_{\Theta} e^{-\frac{1}{2\sigma^2}(\theta-\mu)^2} \log p(\mathcal{T}^m \mid \theta) d\theta - \frac{1}{2} \left[\frac{\sigma^2 + \mu^2}{\sigma_0^2} - \ln \sigma \right] \to \max_{\mu, \sigma}$$

Bayesian inference in Deep Learning

Consider a stochastic layered neural network.

- lack assume a factorising prior distribution for its weights $p(w) \sim \prod_{ij \in E} e^{-\frac{w_{ij}^2}{2\sigma_0}}$
- lack approximate the posterior distribution $p(w \mid \mathcal{T}^m)$ as $q(w) \sim \prod_{ij \in E} e^{-\frac{(w_{ij} \mu_{ij})^2}{2\sigma_{ij}}}$

The task

$$\underset{\mu,\sigma}{\operatorname{arg\,max}} \int q_{\mu,\sigma}(w) \log p(\mathcal{T}^m \mid w) dw - KL(q_{\mu,\sigma}(w) \parallel p(w)) =$$

$$\underset{\mu,\sigma}{\operatorname{arg\,max}} \sum_{j=1}^m \int q_{\mu,\sigma}(w) \log p_w(x_T^j \mid x_0^j) dw - KL(q_{\mu,\sigma}(w) \parallel p(w))$$

can be solved e.g. as follows.

- lacktriangle The likelihood integral is approximated by a sample of w.
- The maximisation is done by stochastic backpropagation, utilising the reparametrisation trick: $w \sim \mathcal{N}(\mu, \sigma)$ is equivalent to $w = \sigma z + \mu$ with $z \sim \mathcal{N}(0, 1)$ (see lecture 3).