Table of Contents

Lectures and Tutorials

Lectures

L Date Lecturer Contents Materials
1 22.9. JK Introduction, course map, requirements. Linear regression (continuous dependent variable, simple linear regression, p-values). SAN_intro, SAN_regression, SAN_lecture_1_czech, SAN_lecture_1_english
2 29.9. JK Multivariate regression (overfitting, model shrinkage). see the previous slides, SAN_lecture_2_czech, SAN_lecture_2_english
3 6.10. JK Nonlinear regression (polynomial regression, splines, local regression). SAN_nlin_regression, SAN_lecture_3_czech, SAN_lecture_3_english
4 13.10. JK Nonlinear regression (polynomial regression, splines, local regression). see the previous slides, SAN_lecture_4
5 20.10. JK Discriminant analysis (categorical dependent variable, LDA, logistic regression). SAN_discriminant, SAN_lecture_5
6 27.10. JK Generalized linear models (GLMs). SAN_GLMs, SAN_lecture_7
7 3.11. JK Dimension reduction (PCA and kernel PCA). SAN_dimred, SAN_lecture_8
8 10.11. JK Dimension reduction (other non-linear methods). see the previous slides, SAN_lecture_9
9 17.11. National holiday no class
10 24.11. TP Robust statistics. lecture notes, slides, SAN_lecture_10
11 1.12. TP Anomaly detection. SAN_anomaly, SAN_lecture_11
12 8.12. ZM Empirical studies, their design and evaluation. Power analysis. SAN_emp_studies_power_analysis, SAN_lecture_12
13 15.12. JK Clustering (formalism, k-means, EM GMM, hierarchical). SAN_clustering, SAN_lecture_13
14 5.1. JK Clustering (spectral clustering). SAN_spect_clustering, SAN_lecture_14

Tutorials

T Date Teacher Contents Materials
1 22.9. JB, AA, JK Statistical testing, t-test, significance, power of the test. san_intro.zip, r_setup.zip, pres-1.pdf
2 29.9. JB, AA, JK Simple linear regression. san_lreg.zip, R cheat sheet, pres_2.pdf
3 6.10. JB, AA, JK Shrinked linear regression san_fs.zip, assignment1.zip, pres_3.pdf
4 13.10. JB, AA, JK Non-linear regression san_nonlinear.zip, pres_4.pdf
5 20.10. JB, AA, JK Discriminant analysis san_lda.zip, assignment2.zip, reading for assignment 2, pres_5.pdf
6 27.10. JB, AA, JK Generalized linear models san_glms.zip, assignment3.zip, pres_7.pdf
7 3.11. JB, AA, JK Mid-term test, the final assignment Final Assignment
8 10.11. JB, AA, JK Dimension reduction san_dimred.zip, assignment4.zip, pres_8.pdf, assig4_R_problem.pdf
9 17.11. National holiday, dean's day no class
10 24.11. TP Robust statistics instruction.pdf
11 1.12. TP Anomaly detection – assignment anomaly2.pdf anomaly-problems.zipNotebook in PlutoLink to Pluto
12 8.12. ZM Empirical study design, power analysis empirical_study, experiment_data_FINAL
13 15.12. JB, AA, JK Clustering san_clustering.zip, pres_13.pdf, pres_13.odp
14 5.1. JB, AA, JK The final assignment – team presentations

Lecture recordings

Playlist from 2024 (Czech)

Playlist from 2025 (English)

Extra Resources for the Curious

If you are interested and want to learn more, here are some extra resources beyond this course you can look at:

  1. Wasserstein, Ronald L., and Nicole A. Lazar. “The ASA statement on p-values: context, process, and purpose.” The American Statistician 70.2 (2016): 129-133. DOI: 10.1080/00031305.2016.1154108

If you have a suggestion on what to add, please let us know. :)