CourseWare Wiki
Search
Log In
b251
courses
be4m33ssu
lectures
Syllabus
Week
Date
Topic
Lecturer
Pdf
Notes
1.
23. 9.
Introduction
VF
2.
30. 9.
Predictor evaluation. Empirical Risk Minimization
VF
[1] Chap 2, [2] Chap 7
3.
7. 10.
Probably Approximately Correct Learning
VF
[1] Chap 2, [2] Chap 7
4.
14. 10.
Vapnik-Chervonenkis dimension
VF
[1] Chap 4, [2] Chap 12
5.
21. 10.
Supervised learning for deep networks
JD
6.
28. 10.
state holidays
7.
4. 11.
SGD, Deep (convolutional) networks
JD
SGD
deep nets
8.
11. 11.
Support Vector Machines
VF
9.
18. 11.
Ensembling I
JD
moved to KN:A-312
, [4]
10.
25. 11.
Ensembling II
JD
[2] Chap 10
11.
2. 12.
Generative learning, Maximum Likelihood estimator
VF
12.
9. 12.
EM algorithm, Bayesian learning
VF
13.
16. 12.
Hidden Markov Models I
JD
[5] Chap 17
14.
6. 1.
Hidden Markov Models II
JD
courses/be4m33ssu/lectures.txt
· Last modified: 2025/12/09 10:42 by
xfrancv