Warning

# Lectures

Lecture Day Topics Codes/slides
1. 22.2. Lists, arrays, dictionaries create , access , append , insert , delete
2. 1.3. 2D arrays, classes and objects 2D fill, generate, analyze search
3. 8.3. Strings and text files
Data are available in the practices section
strings1 strings2 strings3 strings4 strings5 textfiles climate1 climate2
4. 15.3. Prefix sum, binary search, sliding window, speed issues binsearch.py , prefixsum.py , sentinel.py , slidingwindow.py , sorts.py
5. 22.3. Library support for searching and sorting, complexity of searching and sorting and other tasks. combinations.py, maxsumsubseq.py, nestedloops.py , searchspeeds.py, sorts.py , sortspeeds.py
6. 29.3. Trees and recursion I, principles, simple examples recursive1 recursive2 recursive3
7. 5.4. Midterm week
8. 12.4. Trees and recursion II binarytree1.py , binarytree2.py binarytree3.py , nodeclass.py, more below in the notes
9. 19.4. Python application libraries Numpy, Matplotlib, Scipy with examples of use numpy example display with mathplotlib display climate data climate data files
10. 26.4. Processing Internet data sources csv0, csv1, csv2, csv3.py, matplotlib , Gapminder data source, Kaggle data source
11. 3.4. Package Numpy, speed-up, precision, limitations numpydemo.py , integers.py, floats.py, rotatespeed.py, columns.py , User Guide
12. 10.5 University Sports Day classes suspended
13. 17.5. Abstract Data Types (ADT) – stack, queue, tree – and their implementation stack, queue,tree - slides
BFS demo video , DFS demo video
14. 24.5 Repetitions and exam examples set 1 , set 2, arrays_tasks, recursion_tasks
Programming exam examples:
Gallery Guards
Rectangles area
Cooperating Robot Pairs
Secure Matrix Areas
15. not applied in 2023 Processing Internet data sources csv0, csv1, csv2, csv3.py, matplotlib , Gapminder data source, Kaggle data source
16. not applied in 2023 Estimation of execution time of a code, asymptotic complexity. asymptotic complexity, nested loop examples ,
also, consult the example codes in related to speed effectivity in lessons 01-04 mainly

Notes

Lecture 2. Binary search visualisation

Lecture 4. binsearchdemo.py , using small display moduledisplay.py.