Warning
This page is located in archive. Go to the latest version of this course pages. Go the latest version of this page.

Lectures

date week topic slides + videos
20.09.2021 1 Lec 1: MLE regression: derivation of L2 loss, prior lec_01_MLE_regression
27.09.2021 2 Lec 2: MLE classifier: derivation of cross-entropy loss and logistic loss and linear classifier lec_02_MLE_classifiction(pdf)
lec_02_recording
codes
04.10.2021 3 Lec 3: Fully-connected network: computational graph + backpropagation lec_03_NN(pdf)
lec_03_recording
11.10.2021 4 Lec 4: ConvNet: convolutional layer + backpropagation lec_04_ConvNets(pdf)
lec_04_recording
18.10.2021 5 Lec 5: Training: SGD, momentum, convergence rate, Adagrad, RMSProp, AdamOptimizer, diminishing/exploding gradient, oscilation lec_05_training(pdf)
lec_05_recording
25.10.2021 6 Lec 6: Layers: Convolution, Activation functions, Batch-Instance Norm, MaxPooling, Losses + backpropagation
Test T1
lec_06_ConvNets
training_examples.zip
01.11.2021 7 Lec 7: Architectures I: classification (ResNet, Squeeze and `excitation Nets) lec_07_classification_segmentation(pdf)
lec_07_recording
08.11.2021 8 Lec 8: Architectures II: segmentation (DeepLab), pose regression (OpenPose), lec_08_classification_segmentation(pdf)
lec_08_recording
15.11.2021 9 Lec 9: Architectures III: detection (Yolo), depth regression, spatial transformer nets lec_09_regression_detection_stn(pdf)
SVTI streams and recordings
22.11.2021 10 Lec 10: Reinforcement Learning I: Approximated Q-learning, DQN, DDPG, Policy gradient (REINFORCE), lec_10_DQN_DDPG_REINFORCE(pdf)
lec_10_recording
29.11.2021 11 Lec 11: Generative Adversarial Networks:
guest lecture by David Coufal, ÚI AV ČR)
lect_11_GANs(pdf)
lec_11_recording
06.12.2021 12 Lec 12: Reinforcement Learning II: Derivation of the policy gradient, A2C, Inverse Reinforcement Learning, Applications, end-to-end differentiable modules (cvxpy, gradSLAM, pytorch3d) lec_12_A2C_IRL(pdf)
lec_12_recording
13.12.2021 13 Lec 13: Memory and attention: Recurrent nets, Image transformers with attention module, Depth completition (monodepth), Graph convolution, lec_13_memory_attention(pdf)
lec_13_recording
03.01.2022 15 Lec 14: Exam Test ET

All SVTI streams





Old lectures

date week topic slides+videos+codes
21.09.2020 1 Lec 1: Regression/Classification as MLE: derivation of L2-loss, cross-entropy loss, logistic loss

Lec 2: Neural networks: Fully-connected layer + computational graph + backpropagation
lec_1_video (incorrect audio sync!) vir_outline.pdfmle_01_regression.pdf mle_regression.py

lec2_internal_viewerlec_2_video mle_02_classification.pdf mle_linear_classifier.py
28.9.2020 2 State holidays
05.10.2020 3 Lec 3: ConvNet: convolutional layer + backpropagation lec3_internal_viewer lec3.video neural_nets.pdf, convnets.pdf convolution_codes.zip
12.10.2020 4 Lec 4: Training: SGD, momentum, convergence rate, Adagrad, RMSProp, AdamOptimizer, diminishing/exploding gradient, oscilation lec4_internal_viewer lec4_video
training.pdf (corrected slides)
19.10.2020 5 Lec 5: Layers: Convolution, Activation functions, Batch-Instance Norm, MaxPooling, Losses + backpropagation lec5_internal_viewer,
layers.pdf (corrected)
26.10.2020 6 Lec 6: Architectures I: classification (ResNet), segmentation (DeepLab)
Test T1
lec6_internal_viewer
architectures_i.pdf
02.11.2020 7 Lec 7: Learning from unlabelled data: Self-supervision: Contrastive learning, rotation, jigsaw, Colorization
Weak-supervision: Multiple-instance learning, physical constraints; guest lecture by Patrik Vacek
lec7_internal_viewer
unlabelled_data.pdf
09.11.2020 8 Lec 8: Architectures II: pose regression, detection (Yolo), depth regression, spatial transformer nets, LIFTs lec8_internal_viewer
architectures_ii.pdf
16.11.2020 9 Lec 9: Structured inputs: Recurrent neural networks, Convolution in 1,2 and 3D and other structures:
guest lecture by Teymur Azayev
lec9_internal_viewer
lecture_9_structure.pdf
23.11.2020 10 Lec 10: Reinforcement Learning I: DQN, GAE+TD(lambda), DDPG lec10_internal_viewer
reinforcement_learning.pdf
30.11.2020 11 Lec 11: Reinforcement Learning II: Policy gradients (REINFORCE), Inverse Reinforcement Learning, Applications,

What did not fit to lectures: domain transfer, MAML, monodepth, depth from symmetries, Pytorch3D, CvxPyLayer (it did not fit even here ;-))
lec11_internal_viewer
reinforcement_learning.pdf
07.12.2020 12 Lec 12: Generative Adversarial Networks:
guest lecture by David Coufal, ÚI AV ČR)
lec12_internal_viewer
gans_coufal_vir_2019
14.12.2020 13 Exam Test ET see BRUTE for results
04.01.2021 14 Selected teams present their semestral works (the rest presents during labs)
courses/b3b33vir/lectures/start.txt · Last modified: 2022/01/05 12:37 by zimmerk