Warning
This page is located in archive. Go to the latest version of this course pages. Go the latest version of this page.

Presentations

List of available topics

Thursday (11:00-12:30) - the specific date may change.

No. Date Student Topic
1. 24. 9. xxxxxxxx
2. 1.10. xxxxxxxx
3. 8.10. Pažout [42] Principle of adaptive computation of oritentation predicates Shewchuk (short and long version of the paper)
Skořepová [1] 2D range tree construction and range tree search [PREPARATA 77-87, Mount (75-)79-81, Berg 99-120]. Focus on a demonstration example or an applet. Do not repeat Lecture 3.
4. 15.10. Kubaniova [9a] Convex Hull of a simple polygon: algorithm of Lee] [PREPARATA 166-171]
Szabó [9b] Convex Hull of a simple polygon: algorithm of Melkman [PREPARATA 166-171]
5. 22.10. Šipka [8] Beneath-beyond method (horní-dolní) [PREPARATA 131-140].
Chamidullin [7] Overmars and van Leeuwen algorithm of dynamic convex hull. [PREPARATA 118-125]. Detailed example.
6. 29.10. Kouba [11] Diameter of a point set. [PREPARATA 178-183].
Hrubý [23] (2) Kernel of a Polygon [Lee]
7. 5.11. Bilák [13] Largest empty circle [PREPARATA 248-254] - proběhla v náhradním termínu
Šubrtová [12] Smallest enclosing circle. [PREPARATA 248-254] Impementace
8. 12.11. Zajíc [14] k-th order Voronoi diagram. [PREPARATA 242-246].
Římal [44] Variants of Voronoi diagram - different metrics, weights and site shapes applets (use appletviewer <url>)
9. 19.11. Tomas [18] D&C Algorithm of Delaunay triangulation: DeWall algorithm. [ Cignoni, Maur '02, 15-17].
Nguyenova [43] Quad edge data structure and its usage for storage of DT and VD.[Rourke 147-149,199, Guibas&Stolfi]
10. 26.11. Ivashechkin [25] Algorithm for computation of the perimeter of a union of rectangles. [PREPARATA 340-347]
Čajka [35] Intersection of convex polygons. [O'Rourke 242-252]
11. 3.12. Shcherban [36] Robot motion planning [Berg 283-290]
Nechanský [24] Incremental linear programming [BERG (63-)71-79]
12. 10.12. Sebera [6] Triangular method for planar search (Kirkpatrick's Planar point location) [PREPARATA 57-60, Mount 116-120].
Zadina [39] Kinetic data structures - introduction - kinetic convex hull Razzazi
13. 17.12. Burkoň [37] Partition trees and a simplex method [Berg 335-343]
Struž [38] Cutting trees [Berg 346-353]
14. 7.1. Předtermín, pokud bude zájem

Literature

[Mulmuley] K. Mulmuley. Computational Geometry: An Introduction Through Randomized Algorithms. Prentice-Hall, New York, 1993

[Maur] Maur, P: Delaunay Triangulation in 3D. State of the Art and Concept of Doctoral Thesis, ZCU 2002

courses/cg/presentations/start.txt · Last modified: 2020/12/17 10:45 by felkepet