Warning
This page is located in archive.

Labs

Datum Č.T. S/L Náplň Učitel Materiály
19-21.09.2022 1 S Intro: Python, Numpy, Pytorch intro - Home exercise! SP + PS NumPy & PyTorch tutorial
26-28.09.2022 2 L Regression: Backpropagation in computational graphs KZ labs_02_regression.pdf
template_for_students.zip
HW1 - UPLOAD THE FULL ZIP TO BRUTE! (7b)
lab2_recording
03-05.10.2022 3 S Classification: 1D/2D, 0/1 MNIST classifier, derive logistic loss PV class1.tar
10-12.10.2022 4 L Convolution: 1D/2D convolution, blurring filter, edge detection, ReLu, computational graphs PV HW2 (13b)
1D Conv video
17-19.10.2022 5 S Optimizers: convergence rate, oscillations, diminishing gradients, KZ optimizers_student_template.py.zip
24-26.10.2022 6 L Deep ConvNet I: typical structure, ImageNet classifier, using GPU SP + PS HW3: Image classification (13b)
lab6.zip
lab6_ref.zip
31-02.11.2022 7 S Deep ConvNet II: Receptive fields, BatchNorm, Skip connections JC batch norm
Araujo et al.
07-09.11.2022 8 L Segmentation: Net surgery - exploit previously trained classifier. SP + PS HW4: Image segmentation (17b)
lab8.zip
14-16.11.2022 9 S Work on Homeworks (optional consultations upon an email request) SP + PS
21-23.11.2022 10 L Work on Homeworks (optional consultations upon an email request) SP + PS
28-30.11.2022 11 S GAN I: DCGAN for CelebA dataset DC lab_assignment
HW5 (10b)
05-07.12.2022 12 L GAN II: ??? DC
12-14.12.2022 13 S Advanced backpropagation methods: Backprop through optimization layer and/or RL KZ
09-11.01.2023 15 S Presentation of semestral works and feedback KZ
courses/b3b33vir/tutorials/start.txt · Last modified: 2022/11/24 12:02 by zimmerk