Presentations

List of available topics

the specific date may change.

No. Date Student Topic
1. 23. 9. xxxxxxxx
2. 30. 9. xxxxxxxx
3. 7.10. [44] Halfedge data structure in OpenMesh library. Demo of ovelap of planar subdivisions.
[1] 2D range tree construction and range tree search [PREPARATA 77-87, Mount (75-)79-81, Berg 99-120]. Focus on a demonstration example or an applet. Do not repeat Lecture 3.
4. 14.10. [9a] Convex Hull of a simple polygon: algorithm of Lee] [PREPARATA 166-171]
[9b] Convex Hull of a simple polygon: algorithm of Melkman [PREPARATA 166-171]
5. 21.10. [8] Beneath-beyond method (horní-dolní) [PREPARATA 131-140].
[7] Overmars and van Leeuwen algorithm of dynamic convex hull. [PREPARATA 118-125]. Detailed example.
6. 28.10. Public holliday
7. 4.11. [11] Diameter of a point set. [PREPARATA 178-183].
[23] (2) Kernel of a Polygon [Lee]
8. 11.11. [13] Largest empty circle [PREPARATA 248-254] - proběhla v náhradním termínu
[12] Smallest enclosing circle. [PREPARATA 248-254] Impementace
9. 18.11. [14] k-th order Voronoi diagram. [PREPARATA 242-246].
[44] Variants of Voronoi diagram - different metrics, weights and site shapes applets (use appletviewer <url>)
10. 25.11. [18] D&C Algorithm of Delaunay triangulation: DeWall algorithm. [ Cignoni, Maur '02, 15-17].
[43] Quad edge data structure and its usage for storage of DT and VD.[Rourke 147-149,199, Guibas&Stolfi]
11. 2.12. [25] Algorithm for computation of the perimeter of a union of rectangles. [PREPARATA 340-347]
[35] Intersection of convex polygons. [O'Rourke 242-252]
12. 9.12. [36] Robot motion planning [Berg 283-290]
[24] Incremental linear programming [BERG (63-)71-79]
13. 16.12. [6] Triangular method for planar search (Kirkpatrick's Planar point location) [PREPARATA 57-60, Mount 116-120].
[39] Kinetic data structures - introduction - kinetic convex hull Razzazi
14. 6.1. [37] Partition trees and a simplex method [Berg 335-343]
[38] Cutting trees [Berg 346-353]

Literature

[Mulmuley] K. Mulmuley. Computational Geometry: An Introduction Through Randomized Algorithms. Prentice-Hall, New York, 1993

[Maur] Maur, P: Delaunay Triangulation in 3D. State of the Art and Concept of Doctoral Thesis, ZCU 2002

courses/cg/presentations/start.txt · Last modified: 2021/09/23 11:51 by felkepet