Lectures

Date Week Title Resources
24.09.2025 1 Machine learning 101: engineering view on models, loss, learning, learning issues, regression, classification 01_machinelearning101.pdf
01.10.2025 2 Linear classifier: two-class and multi-class linear classifier on RGB images 02_linearclassifier.pdf
08.10.2025 3 Maximum Likelihood Estimation (MLE), KL Divergence: Where does loss function come from, why overfitting exists? 03_maximumlikelihoodkldivergence.pdf
15.10.2025 4 Neural Networks: Perceptron, MLP, Backpropagation, Vector-Jacobian product, Autograd 04_neuralnetworks.pdf
22.10.2025 5 Lecture cancelled (ICCV 2025)
29.10.2025 6 The story of the cat's brain surgery: cortex + convolutional layer and its Vector-Jacobian-Product (VJP), fun with backpropagation 05_cnns.pdf
05.11.2024 7 Midterm test vir_2022_midterm_test.pdf
vir_2022_midterm_solution.pdf
vir_2022_training_questions_midterm_test.pdf
dpl_2025_midterm_test.pdf
Deep learning and Halloween:
drawing01.jpg drawing02.jpg drawing03.jpg drawing04.jpg
12.11.2025 8 Activation, Normalization and Regularization: activation functions, BatchNorm, Dropout, weight decay 06_normalization.pdf
19.11.2025 9 Optimization: SGD, momentum, RMSProp, Adam 07_optimization.pdf
26.11.2025 10 Backbone architectures: ResNet, EfficientNet, Transformers 08_backbonearchitectures.pdf
03.12.2025 11 Task-specific architectures: Object detection, pose estimation, generative networks 09_taskspecificarchitectures.pdf
10.12.2025 12 Reinforcement learning 10_reinforcementlearning.pdf
17.12.2025 13 Implicit layers 11_implicitlayers.pdf
07.01.2026 14 Final test exam_vir_2022.pdf
vir_2022_training_questions_exam_test.pdf
exam_2021.pdf
exam_2022.pdf
courses/becm33dpl/lectures/start.txt · Last modified: 2025/12/17 12:50 by neumalu1