Labs

Datum Č.T. S/L Náplň Učitel Materiály Úkol
22.-26.9.2025 1 L Intro: Introduction to the course and machine learning. Neumann L.
29.9-3.10.2025 2 S 1D regression and 2D classification: Revision of the regression and classification theory, analytic gradient computation, gradient in computational graph and loss minimization. Pimenova O. template_for_students.zip
6.-10.10.2025 3 L Loss, MLP Kučera A. HW01 - MLP
13.-17.10.2025 4 S Autograd: Computational graphs, backpropagation and the automatic gradient computation. Vlk J.
20.-24.10.2025 5 L CNN: Introduction to the convolution and convolution neural network. Vlk J. HW02 - Autograd
27.-31.10.2025 6 S Training of neural networks Hlavsa J.
3.-7.11.2025 7 L Layers of Neural Networks Hlavsa J. HW03 - segmentation
10-14.11.2025 8 S Optimization: Convergence rate, oscillations, diminishing gradients. Pimenova O.
17.-21.11.2025 9 L Holiday - - -
23.-28.11.2025 10 S Transformers I: Introduction to the transformer architecture, GPT2 Čapek D.
3.-5.12.2025 11 L Transformers II: Intro into ViTs Čapek D. HW04 - Transformers
8.-12.12.2025 12 S RL I Intro: Introduction to the reinforcement learning. Policy gradient. Mrkos M.
15.-19.12.2025 13 L RL II - Deep learning: Deep reinforcement learning. Mrkos M. HW05 - RL
5.-9.1.2025 14 S
courses/b3b33urob/tutorials/start.txt · Last modified: 2025/09/30 08:55 by zimmerk