Labs

Datum Č.T. S/L Náplň Učitel Materiály Úkol
23-25.09.2024 1 L Intro: Introduction to the course and machine learning. AK
30.9-02.10.2024 2 S 1D regression and 2D classification: Revision of the regression and classification theory, analytic gradient computation, gradient in computational graph and loss minimization. KZ template_for_students.zip
labs_02_regression.pdf
07-09.10.2024 3 L Loss, MLP AK HW01 - MLP
14-16.10.2024 4 S Autograd: Computational graphs, backpropagation and the automatic gradient computation. JV lab04.zip lab04.pdf
lab04_ref.zip
21-23.10.2024 5 L CNN: Introduction to the convolution and convolution neural network. JV lab05.zip lab05_ref.zip HW02 - Autograd
28-30.10.2024 6 S Independence day Preparation for midterm test
04-06.11.2024 7 L HPC: High performace computing tutorial. RS lab06.zip lab06_ref.zip
11-13.11.2024 8 S Optimization: Convergence rate, oscillations, diminishing gradients. KZ optimizers_student_template.py.zip
18-20.11.2024 9 L Layers: RS hw03.zip HW03 - segmentation
25-27.11.2024 10 S Transformers I: Introduction to the transformer architecture, GPT2 DC lab10.zip lab10_ref.zip
02-04.12.2024 11 L Transformers II: Intro into ViTs DC HW04 - Transformers
09-11.12.2024 12 S RL I Intro: Introduction to the reinforcement learning. Policy gradient. DK
16-18.12.2024 13 L RL II - Deep learning: Deep reinforcement learning. DK HW05 - RL
06-08.01.2024 14 S
courses/b3b33urob/tutorials/start.txt · Last modified: 2024/12/01 20:39 by capekda4