CourseWare Wiki
Search
Log In
b231
courses
be4m33ssu
lectures
Warning
This page is located in archive. Go to the latest version of this
course pages
. Go the latest version of
this page
.
Syllabus
Lecture
Date
Topic
Lecturer
Pdf
Notes
1.
26. 9.
Introduction
BF
2.
3. 10.
Predictor evaluation
VF
, print:
[1] Chap 2, [2] Chap 7
3.
10. 10.
Empirical risk minimization
VF
, print:
[1] Chap 2, [2] Chap 7
4.
17. 10.
Probably Approximately Correct Learning
VF
, print:
[1] Chap 4, [2] Chap 12
5.
24. 10.
Structured Output Support Vector Machines
VF
, print:
[1] Chap 5, [2] Chap 12
6.
31. 10.
Supervised learning for deep networks
JD
7.
7. 11.
SGD, Deep (convolutional) networks
JD
8.
14. 11.
Generative learning, Maximum Likelihood estimator
BF
L. Wasserman, Exp. Fam.
9.
21. 11.
EM algorithm, Bayesian learning
BF
will be held in KN:A-320
10.
28. 11.
Hidden Markov Models I
BF
11.
5. 12.
Hidden Markov Models II
BF
12.
12. 12.
Ensembling I
JD
[4]
13.
19. 12.
Ensembling II
JD
[2] Chap 10
14.
9. 1.
Q&A
All
courses/be4m33ssu/lectures.txt
· Last modified: 2023/12/12 11:17 by
drchajan