Warning
This page is located in archive. Go to the latest version of this course pages. Go the latest version of this page.

Rozvrh na FEL Diskusní fórum

Cíl předmětu

Předmět 33RPZ má studentovi poskytnout souhrnnou představu o rozpoznávání, jeho metodách, nástrojích a aplikacích. S velmi podobnými metodami se někdy setkáte pod názvy teorie rozhodování, analýza dat, dolování z dat, teorie učení či statistické učení.

Základní informace

Zimní semestr 2020/2021

Kdy a kde: KN:E-301 ( Karlovo náměstí, budova E), pátek 11:00-12:30

Vhledem k situaci kolem covid-19 budou přednášky distanční s využitím platformy Zoom. Všichni studenti předmětu dostanou vždy email poslaný z KOSu s odkazem.

Přednášející: Jiří Matas (JM) matas@cmp.felk.cvut.cz, Ondřej Drbohlav (OD) drbohlav@cmp.felk.cvut.cz Jan Šochman (JŠ) sochmj1@fel.cvut.cz

Nutné prerekvizity

Plán přednášek 2019/2020

Č. Datum Př. Zdroj Téma Wiki Additional material
1 25.9. JM pdf Úvod. Formulace úloh řešených v rozpoznávání. Bayesovské rozhodování Machine_learning Naive_Bayes_classifier some simple problems
2 2.10. JM pdf Nebayesovské úlohy (Neyman-Pearson, Minimax, Wald). Minimax
3 9.10. JM pdf Odhady parametrů pravděpodobnostních modelů. Metoda maximální věrohodnosti. Maximum_likelihood
4 16.10. JM pdf Metoda nejbližších sousedů. Neparametrické odhady hustoty K-nearest_neighbor_algorithm
5 23.10. JM pdf Logistická regrese Logistic_regression
6 30.10. JM pdf Učení klasifikátoru. Lineární klasifikátor. Perceptron Linear_classifier Perceptron
7 6.11. JM pdf Učení jako kvadratický optimalizační problém. Klasifikátor typu SVM. Support_vector_machine
8 13.11. JM pdf Učení metodou Adaboost Adaboost
9 20.11. JM pdf Učení metodou backpropagation. Neuronové sítě.Artificial_neural_network
10 27.11. JM pdf Shlukování metodou k-means K-means_clustering K-means++
11 4.12. JM pdf EM algoritmus Expectation_maximization_algorithm Hoffmann,Bishop,Flach
12 11.12. JM pdf Principal component analysis. Fisherův linearní discriminant. Principal_component_analysis Linear_discriminant_analysis Veksler, Franc, ver1
13 18.12. JM pdf Rozhodovací stromy. Decision_tree Decision_tree_learning Rudin@MIT
14 8.1. JM Druhý průchod látkou, připrava na zkoušky. Konzultace / Basic notions recapitulation, links between methods, answers to exam questions (joint for English and Czech courses. In English if needed)

Doporučená literatura

  • Duda R. O., Hart, P. E.,Stork, D. G.: Pattern Classification, John Willey and Sons, 2nd edition, New York, 2001
  • Schlesinger M. I., Hlaváč V.: Deset přednášek ze statistického a strukturního rozpoznávání Ten Lectures on Statistical and Structural Pattern Recognition, ČVUT, 1999
  • Bishop, C.: Pattern Recognition and Machine Learning, Springer, 2011
  • Goodfellow, I., Bengio, Y. and Courville, A.: Deep Learning, MIT Press, 2016. www

Hodnocení

Práce v semestru 50%, písemná část zkoušky 40%, ústní 10%. Pro známku “A” je podmínkou získat z písemné části zkoušky získat alespoň “B”.

Zkouška

Ukázkové příklady pro písemnou část (písemky z předchozích let) naleznete na adrese http://cmp.felk.cvut.cz/cmp/courses/recognition/Exam-questions/ v souborech test_*

Otázky pro ústní i písemnou část jsou voleny z tohoto seznamu otázek či jeho anglické verze.

courses/b4b33rpz/lectures.txt · Last modified: 2020/12/04 10:42 by drbohlav