Warning
This page is located in archive. Go to the latest version of this course pages. Go the latest version of this page.

3. Processor organization, instruction set

Exercise outline

  1. Basic instructions and their description
  2. Transformation source code in C to assembler (MIPS instruction set).
  3. Peripheral access

What shall we do

Part 1 - Basic instruction - description and use

Detailed description:

Instruction Instruction Syntax Operation Description
add add \$d, \$s, \$t \$d = \$s + \$t; Add: Add together values in two registers (\$s + \$t) and stores the result in register \$d.
addi addi \$t, \$s, C \$t = \$s + C; Add immediate: Adds a value in \$s and a signed constant (immediate value) and stores the result in \$t.
sub sub \$d,\$s,\$t \$d = \$s - \$t Subtract: Subtracts a value in register \$t from value of \$s and stores result in \$d.
bne bne \$s, \$t, offset if \$s != \$t go to PC+4+4*offset; else go to PC+4 Branch on not equal: (conditional) jump if value in \$s is not equal to a value in \$t.
beq beq \$s, \$t, offset if \$s == \$t go to PC+4+4*offset; else go to PC+4 Branch on equal: (conditional) jump if value in \$s is equal to a value in \$t.
jump j C PC = (PC ∧ 0xf0000000) ∨ 4*C Jump: Unconditional jump to label C.
lw lw \$t,C(\$s) \$t = Memory[\$s + C] Load word: Loads a word from address in memory and stores it in register \$t.
sw sw \$t,C(\$s) Memory[\$s + C] = \$t Store word: Stores a value in register \$t to given address in memory.
lui lui \$t,C \$t = C << 16 Load upper immediate: Stores given immediate value (constant) C to upper part of register \$t. Register is 32 bits long and C is 16 bits.
la la \$at, LabelAddr lui \$at, LabelAddr[31:16];
ori \$at,\$at, LabelAddr[15:0]
Load Address: stores a 32 bit (address of) label and stores it to register \$at. This is a pseudo-instruction - it is translated into sequence of actual instructions.

Part 2 - Transcribe a program from C to Assembler

In many practical applications we have to use median filter. This median filter removes noise (obvious outliers/dead pixels) from a signal or an image. The median filter takes a neighborhood of a sample (10 samples before and 10 after), finds median value and replaces the sample value with this median. Very similar to this filter is mean filter that replaces the sample value with average value of the nearby samples. The median value is usually calculated by sorting the samples by value and picking the sample in the middle. The sorting algorithm is a cornerstone to median filter implementation. Lets assume we have 21 integers stored in array in memory. The array begins in some given address (e.g. 0x00). On integer occupies one word in the memory. The task is to sort the integers in ascending order. To do this we will implement the bubble sort algorithm. In this algorithm two adjacent values are compared and if they are in wrong order, they are swapped. And this comparisons goes repetitively through array until no swaps are done.

The code for bubble sort is bellow:

int pole[5]={5,3,4,1,2};
int main()
{
	int N = 5,i,j,tmp;
	for(i=0; i<N; i++)
		for(j=0; j<N-1-i; j++)
			if(pole[j+1]<pole[j])
			{
				tmp = pole[j+1];
				pole[j+1] = pole[j];
				pole[j] = tmp;
			}
	return 0;
}

The example of sorting 5 numbers is bellow:
5, 3, 4, 1, 2 –> initial state
3, 4, 1, 2, 5 –> after the first outer cycle finished
3, 1, 2, 4, 5 –> after the second outer cycle finished
1, 2, 3, 4, 5
1, 2, 3, 4, 5
1, 2, 3, 4, 5 –> after the last outer cycle finished - sorted

Transcribe C code above to MIPS assembler. Verify correctness of your implementation in Mips simulator. We will be using this program in the next class. So finish the program at home, if you have not finished it during the class.


Here is a template, you can use:

#define t0 $8
#define t1 $9
#define t2 $10
#define t3 $11
#define t4 $12

#define s0 $16
#define s1 $17
#define s2 $18
#define s3 $19

.globl    array
.data
.align    2

array:
.word    5 3 4 1 2

.text
.globl start
.ent start

start:
// TODO: Write your code here
nop
.end start

How to transcribe short fragments of C code into assembler

if Command
if (i ==j)
  f = g + h;
 
f = f – i;
//   s0=f, s1=g, s2=h, s3=i, s4=j

  bne s3, s4, L1   // If i!=j, go to label L1 
  add s0, s1, s2   // if block: f=g+h
L1:
  sub s0, s0, s3   // f = f-i
if-else Command
if (i ==j)
  f = g + h;
else
  f = f – i;
//   s0=f, s1=g, s2=h, s3=i, s4=j

  bne s3, s4, else  // If i!=j, go to **else** label
  add s0, s1, s2    // if block: f=g+h
  j L2              // jump behind the **else** block
else:
  sub s0, s0, s3    // else block: f = f-i
L2:
while Cycle
int pow = 1;
int x = 0;
 
while(pow != 128)
{
  pow = pow*2;
  x = x + 1;
}
// s0=pow, s1=x

  addi s0, $0, 1     // pow = 1
  addi s1, $0, 0     // x = 0
  addi t0, $0, 128   // t0 = 128 to compare (always have to compare two registers)

while:
  beq  s0, t0, done  // If pow==128, end the cycle. Go to done label.
  sll  s0, s0, 1     // pow = pow*2
  addi s1, s1, 1     // x = x+1
  j    while
done:
for Cycle
int sum = 0;
 
for(int i=0; i!=10; i++)
{
  sum = sum + i;
}
//Is equivalent to following while cycle:
int sum = 0;
 
int i = 0;
while(i!=10){
  sum = sum + i;
  i++;
}
Read values from the data memory.
// Just as an example...
int a, *pa=0x80020040;
int b, *pb=0x80020044;
int c, *pc=0x00001234;
 
a = *pa;
b = *pb;
c = *pc;
// s0=pa (Base address), s1=a, s2=b, s3=c

lui  s0, 0x8002   // pa = 0x80020000;
lw   s1, 0x40(s0)     // a = *pa;
lw   s2, 0x44(s0)     // b = *pb;

addi s0, $0, 0x1234   // pc = 0x00001234;
lw   s3, 0x0(s0)      // c = *pc;
Increment values in an array
int array[4] = { 7, 2, 3, 5 };
 
int main()
{
   int i,tmp;
   for(i=0; i<4; i++)
   {
      tmp = array[i];
      tmp += 1;
      pole[i] = tmp;
   }
   return 0;
}
Complete code for MipsIt simulator:
#define s0 $16
#define s1 $17
#define s2 $18
#define s3 $19

.globl    array       // label "array" is declared as global. It is visible from all files in the project.
.data                 // directive indicating start of the data segment
.align    2           // set data alignment to 4 bytes

array:                 // label - name of the memory block
.word    7, 2, 3, 5    // values in the array to increment...

.text                 // beginning of the text segment (or code segment)
.globl start		  
.ent start			  

start:
la   s0, array        // store address of the "array" to the register s0
addi s1, $0, 0        // initialization instruction of for cycle: i=0, kde i=s1
addi s2, $0, 4        // set the upper bound for cycle

for:
  beq  s1, s2, done   // if s1 == s2, go to label done and break the cycle
  lw   s3, 0x0(s0)    // load value from the array to s3
  add  s3, s3, 0x1    // increment the s3 register
  sw   s3, 0x0(s0)    // replace (store) value from s3 register
  addi s0, s0, 0x4    // increment offset and move to the other value in the array
  addi s1, s1, 0x1    // increment number of passes through the cycle (i++).
  j    for            // jump to  **for** label
done:
nop
.end start


Peripherals mapped into memory address space

QtMips simulator includes a few simple peripherals which are mapped into memory address space.

The first is simple serial port (UART) connected to terminal window. The registers locations and bit fields is the same as for simulators SPIM and MARS. These maps serial port from address 0xffff0000. QtMips maps the UART peripheral to this address as well but offers alternative mapping to address 0xffffc000 which can be encoded as absolute address into LW and SW instructions with zero base register.

Address Register name Bit Description
0xffffc000 SERP_RX_ST_REG Serial port receiver status register
0 Flag set to one when there is new received character in SERP_RX_DATA_REG register
1 When set to one enables interrupt from reception detailed
0xffffc004 SERP_RX_DATA_REG 7 .. 0 ASCII code of received character
0xffffc000 SERP_TX_ST_REG Status register of transmitter writing to terminal
0 When one is read, transmitter is ready to accept character
1 When set to one enables transmitter interrupt detailed
0xffffc004 SERP_TX_DATA_REG 7 .. 0 ASCII code of character to transmit

The next peripherals emulates interaction with simple control elements of a real device. The registers map matches to the subset of registers of dial knobs and LËD indicators peripheral which is available for input and output on a development kits MicroZed APO which are used for your semester work.

Address register name Bit Description
0xffffc104 SPILED_REG_LED_LINE 31 .. 0 The word shown in binary, decimal and hexadecimal
0xffffc110 SPILED_REG_LED_RGB1 23 .. 0 PWM duty cycle specification for RGB LED 1 components
23 .. 16 Red component R
15 .. 8 Green component G
7 .. 0 Blue component B
0xffffc114 SPILED_REG_LED_RGB2 23 .. 0 PWM duty cycle specification for RGB LED 2 components
23 .. 16 Red component R
15 .. 8 Green component G
7 .. 0 Blue component B
0xffffc124 SPILED_REG_KNOBS_8BIT 31 .. 0 Filtered values of dial knobs as 8 numbers
7 .. 0 Blue dial value B
15 .. 8 Green dial value G
23 .. 16 Red dial value R

Analysis of Compiled Code

A simple program reads position of the simulator knobs dials and converts the read values to the RGB led color and text/terminal output. Program is available from directory /opt/apo/qtmips_binrep on the laboratory computers. There is available archive to download as well qtmips_binrep.tar.gz.

The C source code has been compiled by the following commands sequence

mips-elf-gcc -D__ASSEMBLY__ -ggdb -fno-lto -c crt0local.S -o crt0local.o
mips-elf-gcc -ggdb -Os -Wall -fno-lto  -c qtmips_binrep.c -o qtmips_binrep.o
mips-elf-gcc -ggdb -nostartfiles -static -fno-lto crt0local.o qtmips_binrep.o -o qtmips_binrep

The content of the program compiled into ELF executable format is examined by objdump command

mips-elf-objdump --source -M no-aliases,reg-names=numeric qtmips_binrep

There is output with detailed commentaries included.

qtmips_binrep:     file format elf32-bigmips


Disassembly of section .text:

00400018 <main>:

/*
 * The main entry into example program
 */
int main(int argc, char *argv[])
{
  400018:	27bdffe8 	addiu	$29,$29,-24
                           allocate space on the stack for main() function
                           stack frame
  
  40001c:	afbf0014 	sw	$31,20($29)
                           save previous value of the return address register
                           to the stack.

 while (1) {
     uint32_t rgb_knobs_value;
     unsigned int uint_val;

      rgb_knobs_value = *(volatile uint32_t*)(mem_base + SPILED_REG_KNOBS_8BIT_o);
  400020:	8c04c124 	lw	$4,-16092($0)
                           Read value from the address corresponding to the
                           sum of "SPILED_REG_BASE" and "SPILED_REG_KNOBS_8BIT_o"
                           peripheral register offset
                           LW is instruction to load the word. Address is formed
			   from the sum of register $0 (fixed zero) and -16092,
			   which is represented in hexadecimal as 0xffffc124
			   i.e., sum of 0xffffc100 and 0x24. The read value is
			   stored in register $4.

  400024:	00000000 	sll	$0,$0,0x0
                           one NOP instruction to ensure that load finishes before
                           the further value use.

  400028:	00041027 	nor	$2,$0,$4
                           Compute bit complement "~" of the value in the register
			   $4 and store it into register $2

     *(volatile uint32_t*)(mem_base + SPILED_REG_LED_LINE_o) = rgb_knobs_value;
  40002c:	ac04c104 	sw	$4,-16124($0)
                           Store RGB knobs values from register $4to the "LED"
			   line register which is shown in binary decimal
			   and hexadecimal on the QtMips target.
			   Address 0xffffc104

     *(volatile uint32_t*)(mem_base + SPILED_REG_LED_RGB1_o) = rgb_knobs_value;
  400030:	ac04c110 	sw	$4,-16112($0)
                           Store RGB knobs values to the corresponding components
			   controlling a color/brightness of the RGB LED 1
                           Address 0xffffc110


     *(volatile uint32_t*)(mem_base + SPILED_REG_LED_RGB2_o) = ~rgb_knobs_value;
  400034:	ac02c114 	sw	$2,-16108($0)
                           Store complement of RGB knobs values to the corresponding
			   components controlling a color/brightness of the RGB LED 2
                           Address 0xffffc114

     /* Assign value read from knobs to the basic signed and unsigned types */
     uint_val = rgb_knobs_value;
                           the read value resides in the register 4, which
                           correspond to the first argument register a0

     /* Print values */
     serp_send_hex(uint_val);
  400038:	0c100028 	jal	4000a0 <serp_send_hex>
  40003c:	00000000 	sll	$0,$0,0x0
                           call the function to send hexadecimal value to
                           the serial port, one instruction after JAL
                           is executed in its delay-slot, PC pointing
                           after this instruction (0x400040) is stored
                           to the register 31, return address register

     serp_tx_byte('\n');
  400040:	0c100020 	jal	400080 <serp_tx_byte>
  400044:	2404000a 	addiu	$4,$0,10
                           call routine to send new line character to the
                           serial port. The ASCII value corresponding to
                           '\n' is set to argument a0 register in delay slot
                           of JAL. JAL is decoded and in parallel instruction
                           addiu $4,$0,10 is executed then PC pointing to the address
                           0x400048 after delay slot is stored to return address
                           register and next instruction is fetch from the JAL
                           instruction target address, start of the function
                           serp_tx_byte

  400048:	1000fff5 	beqz	$0,400020 <main+0x8>
  40004c:	00000000 	sll	$0,$0,0x0
                           branch back to the start of the loop reading value from
                           the knobs


00400050 <_start>:
	la      $gp, _gp
  400050:	3c1c0041 	lui	$28,0x41
  400054:	279c90e0 	addiu	$28,$28,-28448
                           Load global data base pointer to the global data
                           base register 28 - gp.
			   Symbol _gp is provided by linker.

	addi    $a0, $zero, 0
  400058:	20040000 	addi	$4,$0,0
                           Set regist a0 (the first main function argument)
			   to zero, argc is equal to zero.

	addi    $a1, $zero, 0
  40005c:	20050000 	addi	$5,$0,0
                           Set regist a1 (the second main function argument)
			   to zero, argv is equal to NULL.

	jal     main
  400060:	0c100006 	jal	400018 <main>
	nop
  400064:	00000000 	sll	$0,$0,0x0
                           Call the main function. Return address is stored
			   in the ra ($31) register.


00400068 <quit>:
quit:
	addi    $a0, $zero, 0
  400068:	20040000 	addi	$4,$0,0
                           If the main functio returns, set exit value to 0

	addi    $v0, $zero, 4001  /* SYS_exit */
  40006c:	20020fa1 	addi	$2,$0,4001
                           Set system call number to code representing exit()

	syscall
  400070:	0000000c 	syscall
                           Call the system.

00400074 <loop>:

loop:	break
  400074:	0000000d 	break
                           If there is not a system try to stop the execution
			   by invoking debugging exception

        beq     $zero, $zero, loop
  400078:	1000fffe 	beqz	$0,400074 <loop>
	nop
  40007c:	00000000 	sll	$0,$0,0x0
                           If even this does not stop execution, command CPU
			   to spin in busy loop.

void serp_tx_byte(int data)
{
00400080 <serp_tx_byte>:
  while (!(serp_read_reg(SERIAL_PORT_BASE, SERP_TX_ST_REG_o) &
                SERP_TX_ST_REG_READY_m));
  400080:	8c02c008 	lw	$2,-16376($0)
  400084:	00000000 	sll	$0,$0,0x0
                           Read serial port transmit status register,
                           address 0xffffc008

  while (!(serp_read_reg(SERIAL_PORT_BASE, SERP_TX_ST_REG_o) &
  400088:	30420001 	andi	$2,$2,0x1
  40008c:	1040fffc 	beqz	$2,400080 <serp_tx_byte>
  400090:	00000000 	sll	$0,$0,0x0
                           Wait again till UART is ready to accept
			   character - bit 0 is not zero.
                           NOP in the delayslot.

  *(volatile uint32_t *)(base + reg) = val;
  400094:	ac04c00c 	sw	$4,-16372($0)
                           write value from register 4 (the first argument a0)
                           to the address 0xffffc00c (SERP_TX_DATA_REG_o)
                           serial port tx data register.
}
  400098:	03e00008 	jr	$31
  40009c:	00000000 	sll	$0,$0,0x0
                           jump/return back to continue in callee program
                           address of the next fetch instruction is read
                           from the return address register 32 ra
                           
void serp_send_hex(unsigned int val)
{
004000a0 <serp_send_hex>:
  4000a0:	27bdffe8 	addiu	$29,$29,-24
                           allocate space on the stack for the routine stack frame
                                                      
  4000a4:	00802825 	or	$5,$4,$0
                           copy value of the fisrt argument regsiter 4 (a0)
                           to the register 5

  for (i = 8; i > 0; i--) {
  4000a8:	24030008 	addiu	$3,$0,8
                           set the value of the register 3 to the 8

  4000ac:	afbf0014 	sw	$31,20($29)
                           save previous value of the return address register
                           to the stack.

    char c = (val >> 28) & 0xf;
  4000b0:	00051702 	srl	$2,$5,0x1c
                           shift value in register 5 right by 28 bits and store
                           result in the register 2

  4000b4:	304600ff 	andi	$6,$2,0xff
                           abundant operation to limit value range to the character
                           type variable and store result in the register 6
    if (c < 10 )
  4000b8:	2c42000a 	sltiu	$2,$2,10
                           set register 2 to one if the value is smaller than 10

      c += 'A' - 10;
  4000bc:	10400002 	beqz	$2,4000c8 <serp_send_hex+0x28>
  4000c0:	24c40037 	addiu	$4,$6,55
                           if value is larger or equal (register 2 is 0/false) then add
                           value 55 ('A' - 10)..(0x41 - 0xa) = 0x37 = 55 to the register
                           6 and store result in the register 4. This operation is
                           executed even when the branch arm before else is executed,
                           but result is immediately overwritten by next instruction
      c += '0';
  4000c4:	24c40030 	addiu	$4,$6,48
                           add value 0x30 = 48 = '0' to the value in the register 6
                           and store result in the register 4 - the fisrt argument a0
  
    serp_tx_byte(c);
  4000c8:	0c100020 	jal	400080 <serp_tx_byte>
  4000cc:	2463ffff 	addiu	$3,$3,-1
                           call subroutine to send byte to the serial port
                           decrement loop control variable (i) in delay-slot

  for (i = 8; i > 0; i--) {
  4000d0:	1460fff7 	bnez	$3,4000b0 <serp_send_hex+0x10>
  4000d4:	00052900 	sll	$5,$5,0x4
                           the final condition of for loop converted to do {} while()
                           loop. If not all 8 character send loop again.
                           Shift left value in the register 5 by 4 bit positions.
                           The compiler does not store values of local variables to
                           the stack even does not store values in caller save registers
                           (which requires to save previous values to the function stack frame).
                           Compiler can use this optimization because it knows registers usage
                           of called function serp_tx_byte().
  }
  4000d8:	8fbf0014 	lw	$31,20($29)
  4000dc:	00000000 	sll	$0,$0,0x0
                           restore return address register value to that found at function
                           start
                           
  4000e0:	03e00008 	jr	$31
  4000e4:	27bd0018 	addiu	$29,$29,24
                           return to the caller function. Instruction in jump register
                           delay-slot is used to restore stack pointer/free function frame.

  • GNU Cross Compiler for MIPS-ELF architecture - GNU Compatible Compiler for MIPS architecture for Debian Linux OS (x86_64/i586).
  • gcc-binutils-newlib-mips-elf_4.4.4-1_mingw32.zip - GNU Compatible compiler for MIPS architecture for MS Windows with MinGW32. To compile programs for MipsIT simulator you will need to specify following parameters: -nostdlib -nodefaultlibs -nostartfiles -Wl,-Ttext,0x80020000. For more complex programs you will probably have to specify -lm -lgcc -lc parameters.
  • Popis procesoru MIPS - description of MIPS processor and complete instruction set.
    • Missouri State University - Alternative MIPS simulator in JAVA
    • The source code in this simulator has to be without macro definitions. If you have source code from MipsIT simulator, you have to preprocess it. To do this, you can use e.g. GCC compiler in following way:

gcc -E assembler.S -o preprocessed_assembler.s

courses/b35apo/en/tutorials/03/start.txt · Last modified: 2019/03/16 20:34 by pisa