Warning
This page is located in archive.

You will implement three keys functions of the KCF tracker, described in High-Speed Tracking with Kernelized Correlation Filters by Henriques et.al.

How to start work

  1. unpack to $KCFDIR

Gaussian correlation

Write a function function k = kernel_correlation(sigma, x, x_prime) , which computes gaussian kernel with bandwidth sigma for all displacements between input patches X and X_prime, which must both be MxN, in Fourier domain.

hat stands for Fourier-transformed patches, X∗ is the complex-conjugate (function conj) of X,

Functions fft2 and circshift will help you. circshift will set of the response map in the center of the image after ifft2(fft2()), ⨀ stands for element-wise multiplication

Training

Write function alphaf = train_kcf(x,yf,sigma,lambda), which computes filters values. yf comes already in Fourier domain, sigma is parameter for kernel_correlation and lambda is regularization parameter in Ridge regression. Division is element-wise. Output alphaf should be in Fourier domain.

Detection

Write a function response_map = detect_kcf(x,z,sigma,alphaf). This function returns response map between patches X and Z, which must both be MxN, using alphaf weights. Convert response map to spatial domain by ifft2 before returning.

Examples of tho two patches, their pixel-wise difference and response map are shown in figure below

After finishing this 3 functions, run run_tracker.m file to test tracker and save image output.

courses/ucuws17/labs/11_kcf_tracking.txt · Last modified: 2017/01/22 05:49 by mishkdmy