Search
G=gauss(x,sigma)
D=dgauss(x,sigma)
conv2
sigma = 6.0; x = [-ceil(3.0*sigma):ceil(3.0*sigma)]; G = gauss(x, sigma); D = dgauss(x, sigma); imp = zeros(51); imp(25,25) = 255; out = conv2(G,G,imp); ... imagesc(out); % or surf(out);
out=gaussfilter(in,sigma)
2*(sigma*3.0)+1
[dx,dy]=gaussderiv(in,sigma)
[dxx,dxy,dyy]=gaussderiv2(in,sigma)
Additional study material: chapters [3,4,5] on the Gaussian function, its derivatives and their role in image processing
A=affine(x1,y1,x2,y2,x3,y3)
out=affinetr(in,A,ps,ext)
out=affinetr(in,A,41,3.0)
Submit all the Matlab functions implemented in this lab: gauss.m, dgauss.m, gaussfilter.m, gaussderiv.m, gaussderiv2.m, affine.m and affinetr.m into the upload system in a .zip archive. Keep all functions in the root of the .zip archive together with all helper functions required. Follow closely the specification and order of the input/output arguments.
gauss.m
dgauss.m
gaussfilter.m
gaussderiv.m
gaussderiv2.m
affine.m
affinetr.m
Geometric transformations - hierarchy of transformations, homogeneous coordinates Geometric transformations - review of course Digital image processing
You can check results of the functions required in this lab using the Matlab function publish. Copy the test script test.m into MATLAB path (directory with implemented functions) a run. Compare your results to the reference solution