Search
The main task of the homework is to implement a grid based path planning approach that will guide the simulated robot through the maze. The homework focus on integration of individual essential phases of map preprocessing, path planning and plan execution.
.py
eval.py
eval_functions.py
hexapod_vrep
planner.py
maze1.ttt
The solution will be evaluated with a modified version of the eval.py function. The minimum evaluation function example is:
import sys import map as mp import planner as pl import numpy as np #instantiation of map and planner map = mp.Map() planner = pl.Planner() ################################################ # Testing ################################################ #maze name, (size_x, size_y) in vrep, (offset_x, offset_y) for coordinates transformation, voxel_size, start_position in the map, goal_position in the map, execution flag test = ("./mazes/maze1.png",(10,8.6),(5,4.3),0.1,(92,75),(5,20),True) map.from_file(test[0],test[1],test[2],test[3]) start = test[4] goal = test[5] execute = test[6] ###################################### #path planning ###################################### path = planner.plan(map, start, goal) ###################################### #path execution ###################################### ret = planner.execute(map, start, goal)
The planner method plan(map, start, goal) shall return a feasible path to given grid map with a voxel size of 0.1 m. The planner method execute(map, start, goal) shall guide the simulated robot through the environment.
plan(map, start, goal)
execute(map, start, goal)