CourseWare Wiki
Search
Log In
old
courses
b4m36smu
tutorials
Warning
This page is located in archive.
Tutorials
T
Date
Tutor
Deadline
Contents
Materials
1
4.10.
PR
Introduction, Python environment
PDF
2
27.2.
JB
PEAS agent model, environment properties, input/output types of machine learning models, demos
solution to entrance test
Slides
3
6.3.
JB
Learning conjunctive and disjunctive concepts
tutorial3.pdf
cv3_student.py
cv3_referential_solution.py
4
13.3.
JB
Assignment of the first student project
project1.zip
smu_student_projects.pdf
5
20.3.
OH
Bayesian Networks - semantics
tutorial1.zip
6
27.3.
OH
Bayesian Networks - inference
tutorial2.zip
7
3.4.
OH
Assignment of the second student project
smu_project_v1.01.pdf
project.zip
8
10.4.
MS
Inductive Logic Programming - learning from interpretations
ilp1.pdf
ilptutorial1.zip
9
24.4.
MS
9. 5. 2017
Inductive Logic Programming - learning from clauses
ilp2nassignment.pdf
ilpassignment_1.0.2.zip
10
2.5.
MS
ILP, Q&A
ilp3_v1.1.pdf
11
11.5.
PR
Reinforcement learning demos and introduction
rltutorial1.zip
,
slides
12
15.5.
PR
06/02/2017 (5am)
ILP example, Assignment of the fourth project
zip (v 1.0.3)
,
pdf (v 1.0.3)
13
22.5.
PR
Passive reinforcement learning agents, TD methods
zip
,
slides
courses/b4m36smu/tutorials.txt
· Last modified: 2017/05/24 15:13 by
rysavpe1