Warning
This page is located in archive.

Tutorials

T Date Tutor Deadline Contents Materials
1 4.10. PR Introduction, Python environment PDF
2 27.2. JB PEAS agent model, environment properties, input/output types of machine learning models, demos solution to entrance test Slides
3 6.3. JB Learning conjunctive and disjunctive concepts tutorial3.pdf cv3_student.py cv3_referential_solution.py
4 13.3. JB Assignment of the first student project project1.zip smu_student_projects.pdf
5 20.3. OH Bayesian Networks - semantics tutorial1.zip
6 27.3. OH Bayesian Networks - inference tutorial2.zip
7 3.4. OH Assignment of the second student project smu_project_v1.01.pdf project.zip
8 10.4. MS Inductive Logic Programming - learning from interpretations ilp1.pdf ilptutorial1.zip
9 24.4. MS 9. 5. 2017 Inductive Logic Programming - learning from clauses ilp2nassignment.pdf ilpassignment_1.0.2.zip
10 2.5. MS ILP, Q&A ilp3_v1.1.pdf
1111.5. PR Reinforcement learning demos and introduction rltutorial1.zip, slides
12 15.5. PR 06/02/2017 (5am) ILP example, Assignment of the fourth project zip (v 1.0.3), pdf (v 1.0.3)
13 22.5. PR Passive reinforcement learning agents, TD methods zip, slides
courses/b4m36smu/tutorials.txt · Last modified: 2017/05/24 15:13 by rysavpe1