Warning
This page is located in archive.

A(E)4M39VG - Computational Geometry

( home | lectures | seminars | presentations | forum | upload | links )

Presentations

List of available topics

Thursday (12:45-14:15)

No. Date Student Topic
1. 5.10. xxxxxxxxxxxxx
2. 12.10. xxxxxxxxxxxxx
3. 19.10. xxxxxxxxxxxxx [1] 2D range tree construction and range tree search [PREPARATA 77-87, Mount (75-)79-81, Berg 99-120]. Focus on demonstration example or applet. Do not repeat Lecture 3.
xxxxxxxxxxxxx [3] BSP trees in 2D and 3D [Mulmuley 372-382, Berg 249-263]
4. 26.10. Kučera [9a] Convex Hull of a simple polygon: algorithm of Lee [PREPARATA 166-171]
Steidl [9b] Convex Hull of a simple polygon: algorithm of Melkman
5. 2.11. [6] Triangular method for planar search (Kirkpatrick's Planar point location) [PREPARATA 57-60, Mount 116-120].
[7] Overmars and van Leeuwen algorithm of dynamic convex hull. [PREPARATA 118-125]. Detailed example.
6. 9.11. [8] Beneath-beyond method (horní-dolní) [PREPARATA 131-140].
Špetlík [11] Diameter of a point set. [PREPARATA 178-183].
7. 16.11. Podaný [13] Largest empty circle [PREPARATA 248-254]
Kovařovic [12] Smallest enclosing circle. [PREPARATA 248-254]
8. 23.11. Čajka [21] Overlap of planar subdivisions.
Mánek [25] Algorithm for computation of the perimeter of a union of rectangles. [PREPARATA 340-347]
9. 30.11. HW deadline
10. 7.12. Prágr [18] D&C Algorithm of Delaunay triangulation: DeWall algorithm. [ Cignoni, Maur '02, 15-17].
Jašek [23] (2) Kernel of a Polygon [Lee]
11. 14.12. Fiala [37] Partition trees and a simplex method [Berg 335-343]
Frantál [38] Cutting trees [Berg 346-353]
12. 21.12. Rozumný [14] k-th order Voronoi diagram. [PREPARATA 242-246].
Sochorová [39] Kinetic data structures - introduction - kinetic convex hull [Razzazi]
13. 4.1. HW deadline
14. 11.1.

Literature

[Mulmuley] K. Mulmuley. Computational Geometry: An Introduction Through Randomized Algorithms. Prentice Hall, New York, 1993

courses/ae4m39vg/presentations/start.txt · Last modified: 2017/10/21 22:46 by felkepet