

OI-OPPA. European Social Fund Prague & EU: We invest in your future.

Smallest enclosing circle Jan Volný - 26.10.2012

Overview

- Smallest enclosing circle (SEC) problem
- Applications of SEC
- Brute-force algorithm
- Faster algorithms
- Summary

SEC problem

 Let us assume a set of points in a plane. The smallest enclosing circle (minimum enclosing circle) is such a minimal circle that covers all these points

Applications

- Facility location problem
- Bomb Problem
- Radio transmitter position

Basic principle

The smallest enclosing circle is unique and:

- is either circumcircle of some (at least) three points
 OR
- is defined by two points as a diameter

Brute-force algorithm

- Makes circles of all pairs and triplets of all given points of the set
 - Finds the smallest circle, which covers all points $O(n^4)$
- Very slow method

Faster algorithms

 Based on the minimization of the maximal distance from the center of the circle

$$\min_{p_0} \max_i (x_i - x_0)^2 + (y_i - y_0)^2$$

- Elzinga and Hearn (1972)
- $O(n^{2})$ $O(n \cdot log(n))$ $O(n \cdot log(n))$ O(n) O(n)

Elzinga & Hearn

1.	<pre>Pick any 2 points of the set Let them make a diameter of a circle if the circle covers all points</pre>														
2.	Let them make a diameter of a circle if the circle covers all points														
	if the circle covers all points \implies STOP														
	else choose the third point and go to step 3														
3.	if the triangle is <i>right</i> or <i>obtuse</i>														
	drop the point at the angle \geq 90°, go to step 2														
	else go to step 4														
4.	if the circle covers all points \implies STOP else choose 1 point (P) out of circle, get the farthest														
	else choose 1 point (P) out of circle, get the farthest														
	vertex (Q), extend the diameter through														
	this vertex, choose the vertex (R)														
	this vertex, choose the vertex (R) that is in the half plane opposite														
	that is in the half plane opposite to the point, go to step 3														
	· · · · · · · · · · · · · · · · · · ·														
	* * * * * * * * * * * * * * * * * * * *														
+-															
~ + +	Smallest enclosing circle – Jan Volný														
+	+ DCGI + + + + + + + + + + + + + + + + + + +														

Elzinga & Hearn - summary

- Improved method of the brute force algorithm
- Increasing radius of the circle makes the algorithm finite
- Complexity O(n²)

																															+	+
																												+	+	+	+	+
																								+	+	+	+	+	+	+	+	+
																					+	+	+	+	+	+	+	+	+	+	+	+
																		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
															+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
												+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+ + + + +									+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	R		Ð)	R	+
+ + + + + + +	+	+	+	+	+	+	+	+	+	+	+ mall	+ est e	+ nclo			+ 1e _	+ .lan	+ Vol	+ ný	+	+	+	+	+	+	+	+			S	\mathcal{Q}	+
+ + * + DC	G	+	+	+	+	+	+	+	+	+	+	+	+	/3119 + /0/	15)	+	+	+	+	+	+	+	+	+	+	+	+ [//	R	$\int dx$	Ŋ	+
+ + + + + + +	+	+	+	+	+	+	+	+	+	+	+	+	+	(9/	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

Shamos & Hoey

- Algorithm using the Voronoi diagram
- The Venteroofthagrammadlest eleberstrage eleverstrage eleverstrage

Shamos & Hoey

- The construction of Farthest-point Voronoi diagram of the set of points
 - $O(n \cdot log(n))$
- Finding the center of the circle
 - O(n)

Nimrod Megiddo

- Algorithm using linear programming for minimization problems
- Prune and search method
- Works in linear time
- In each step it reduces the input size by a constant fraction 1/f
- Uses methods median(), MEC-center() for pruning
- Then the time is $O(n)^*(1+(1-f)+(1-f)^2+...) \longrightarrow O(f \cdot n)$

Summary

- Problem of minimax
- The naïve algorithm works in O(n⁴), with the improvement in O(n²)
- The best algorithms can be linear

source: wordpress.com

If you can implement it in linear time...

Smallest enclosing circle - Jan Volny

. just do it

References

- F. P. Preparata, M. I. Shamos, "Computational Geometry An Introduction", Springer Verlag, 2nd edition, 1985
- J. Helzinga, D. W. Hearn, "Geometrical Solutions for Some Minimax Location Problems", *Transportation Science*, 1972
- I. M. Shamos, D. Hoey, "Closest-point problems", Foundations of Computer Science, 1975
- X. Sheng, R. M. Freund, J. Sun, "Solution Methodologies for the Smallest Enclosing Circle Problem", Computational Optimization and Applications, 2003
- N. Megiddo, "Linear-Time Algorithms for Linear Programming in R³ and Related Problems", Society for Industrial and Applied Mathematics, 1983

Smallest enclosing circle – Jan Vo

Thank you for your attention Jan Volný, 26.10.2012

																														+	
																											+	+	+	+	
																							+	+	+	+	+	+	+	+	H
																				+	+	+	+	+	+	+	+	+	+	+	-
																	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Н
														+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Н
											+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Н
* * * * * * *								+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Н
$\begin{array}{c} & \stackrel{+}{} \\ + & \stackrel{+}{} \\ + & \stackrel{+}{} \\ + & \stackrel{+}{} \\ + & \stackrel{+}{} \\ \end{array}$				+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	R		Ŋ	X	Н
+ + + + + + +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	18		Ķ	\bigcirc	Н
✓ DCGI	+	+	+	+	+	+	+	+	+		est e	+	sing (15/	circ + 15)	+ +	Jan +	+	1y +	+	+	+	+	+	+	+	+/	// \	R		<u> </u>	4

How to build FP VD

- Higher order VD the cell describes the nearest area to the set of points
- FP VD is the VD of the (*n*-1)-order

Elzinga & Hearn - proof

- The improvement of the brute-force algorithm is based on finding the 2 farthest points of the set
- Finding the farthest two points requires computing (m² - m)/2 distances
- That gives us the complexity O(n²)

																																	+	+
																														+	+	+	+	+
																										+	+	+	+	+	+	+	+	+
																							+	+	+	+	+	+	+	+	+	+	+	+
																				+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
																	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
														+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
- + + +											+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
$\begin{array}{c} + \stackrel{\cdot}{+} + \\ + + + \end{array}$	+						+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	R		D	X	+
+ + + +	+	+	+	+	+	+	+	+	+	+	+	+0	+	+	+	+	+	+	+ lan		+ 2)/	+	+	+	+	+	+	+	+	1/		K	\bigcirc	+
+ + +	D)	+	+	+	+	+	+	+	+	+	+	+	+	/31110 + /17	/15)	+	+	+	יי +	+	+	+	+	+	+	+	+ /	//	R	J a	Ŋ	+
		+	+	+	+	-	-	+	+	-	+	+	+	+	-	(17)	(13)	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+

Shamos & Hoey - proof

- The farthest-point Voronoi diagram is built in O(n·log(n)) and has O(n) edges and vertices
- We find two farthest points in O(n)
- If the circle determined by these 2 points encloses all the points, we are done
- Otherwise the center is a vertex of the FP VD (there are at most *n* vertices, so all the circumradii can be found in O(n))

Nimrod Megiddo - pseudocode

- Arbitrarily pair up the n points in S to get n/2 pairs
- Construct a bisecting line for each pair of points, to get n/2 bisectors
- Call median() to find the bisector with median slope. Call this slope m_{mid}
- Pair up each bisector of slope $\geq m_{mid}$ with another of slope $< m_{mid}$, to get n/4 intersection points. Call the set I
- Call median() to find the point in I with median y-value. Call this y-value y_{mid}
- Call <u>MEC-center()</u> to find which side of the line y=y_{mid} the MEC-center C lies on. (Without loss of generality, suppose it lies above.)
- Let I' be the subset of points of I whose y-values are less than y_{mid} . (I' contains n/8 points.)
- Find a line L with slope m_{mid} such that half the points in I' lie to L's left, half to its right.
- Call <u>MEC-center()</u> on L. Without loss of generality, suppose C lies on L's right.
- Let I'' be the subset of I' whose points lie to the left of L. (I'' contains n/16 points.)

Smallest enclosing circle – Jan Volný (19/15)

+ + + + + + + + + + + +

Voronoi diagram – proof

- Suppose that the set S of n points is divided into two subsets L and R, each containing n/2 points
- Assume that we already possess the Voronoi diagrams
 V(L) and V(R) of L and R separately
- If these can be merged in linear time to form the diagram V(S) of the entire set, then splitting the problem recursively will give an O(N log N) algorithm

Elzinga & Hearn - update

- In the last step of the algorithm we choose the opposite vertex to the point P
- Proof: In Region 2 the angle by C is acute, otherwise it is obtuse same half-plane doesn't contain any Region 2

OI-OPPA. European Social Fund Prague & EU: We invest in your future.