

OI-OPPA. European Social Fund Prague & EU: We invest in your future.

Diameter of a point set

Martin Krošlák

Computer Graphics Open Informatics CTU in Prague

October 24, 2012

・ロト ・御ト ・モト ・モト

12

Contents

1 Theory

2 Algorith

- Overview
- Step-by-step
- Pseudocode

E

DQC

◆ロト ◆聞ト ◆ヨト ◆ヨト

- diameter of a set of points
 - maximum distance between any 2 points in the set
 - in 2D it is diameter of a bounding circle (n-sphere in general) enclosing all points of the set

• Problem: Which points to use?

• brute force solution - $\Theta(n^2)$ where *n* is number of points

3

• • • • • • • •

∃ ► < Ξ</p>

Fact

The diameter of a set is equal to the diameter of its convex hull.

- convex hull typically consists of much fewer points
- in worst case, all points are on convex hull (eg. circular distribution)

Definition

Given a convex polygons P, a line of support I is a line intersecting P and the interior of P lies to one side of I.

• "tangent" of a convex polygon

3

イロト イポト イヨト イヨト

Fact

The diameter of a convex polygon is the greatest distance between its parallel lines of support.

3

イロト イポト イヨト イヨト

• If support lines passing two points on convex hull cannot be parallel, these points cannot form diameter!!!

Definition

A pair of points that allows parallel supporting lines is called antipodal.

- it has been shown, that the number of *antipodal* pairs is linearly dependent on number of points of convex hull
 - specifically, it is at most 3n/2

イロト イポト イヨト イヨ

Contents

1 Theory

2 Algorithm

- Overview
- Step-by-step
- Pseudocode

3

イロト イヨト イヨト イヨト

Algorithm for finding diameter of a point set:

- construct convex hull of given set of points
 - complexity $O(n \log n)$ where n is number of points in the set
- find antipodal pairs
 - complexity in 2D is O(h) where *h* is number of points on the convex hull
- find the diametral pair among antipodal pairs and determine it's length
 - complexity O(p) where p is number of antipodal pairs

・ロト ・ 一 ・ ・ ヨ ト ・ ヨ ・ ・ ク へ つ

Find antipodal pairs

- uses two pointers, *p* and *q*, which iterate over points of convex hull in counter-clockwise order
- repeatedly calculates area of triangles formed by *p*, *q* and points immediately following *p* and *q*
- wraps point indexing; point p_0 is following after p_n

イロト 不得 トイヨト イヨト ヨー シタウ

Find antipodal pairs

- start with $p = p_n$ and $q = p_0$
- 2 repeatedly move q forward until first antipodal pair is found
- **③** set q_0 to current position of q
- in main loop, each time q or p is incremented, or when when we find two parallel lines, (p, q) pair is added to antipodal pairs
- main loop terminates when whole convex hull has been traversed by q (when $q = p_0$)

イロト 不得 トイヨト イヨト ヨー シタウ

 $p = p_n;$ q = p.next;

NA	IZ YIZI.	(CTU)
wartin	N rosiak	(CIU)

ヨー つへぐ

・ロト ・四ト ・ヨト ・ヨト

イロト イヨト イヨト

E

while area(p, p.next, q.next) > area(p, p.next, q) do $\ \ q = q.next;$

E

590

<ロ> (日) (日) (日) (日) (日)

E 990

<ロ> (日) (日) (日) (日) (日)

E 990

◆ロト ◆聞ト ◆ヨト ◆ヨト

p = p.next;

E 99€

イロト イヨト イヨト イヨト

pairs.add(p,q);

NA	Z	(CTU)
iviartin	nrosiak i	
		/

æ

590

◆ロト ◆聞ト ◆ヨト ◆ヨト

3

イロト イポト イヨト イヨト

while
$$area(p, p.next, q.next) > area(p, p.next, q)$$
 do
 $q = q.next;$
if $(p,q) \neq (q_0, p_0)$ then
 $pairs.add(p,q);$

三 つくぐ

・ロト ・四ト ・ヨト ・ヨト

3

イロト イポト イヨト イヨト

3

イロト イポト イヨト イヨト

3

∃ ► < ∃ ►</p>

Image: A matrix of the second seco

while
$$area(p, p.next, q.next) > area(p, p.next, q)$$
 do
 $q = q.next;$
if $(p,q) \neq (q_0, p_0)$ then
 $_ pairs.add(p,q);$

三 つくぐ

イロト イヨト イヨト イヨト

while
$$area(p, p.next, q.next) > area(p, p.next, q)$$
 do
 $q = q.next;$
if $(p,q) \neq (q_0, p_0)$ then
 $_ pairs.add(p,q);$

p = p.next;

Martin	Krošlák ((CTU)
		· /

イロト イヨト イヨト イヨト

E 996

pairs.add(p,q);

Mantin	Zun XIAI.	(CTII)
wartin	rrosiak j	CIU)

æ

590

◆ロト ◆聞ト ◆ヨト ◆ヨト

3

프 문 문 프 문

< init →

while area(p, p.next, q.next) > area(p, p.next, q) do q = q.next;if $(p,q) \neq (q_0, p_0)$ then $\ \ \ pairs.add(p,q);$

3

프 문 문 프 문

while
$$area(p, p.next, q.next) > area(p, p.next, q)$$
 do
 $q = q.next;$
if $(p,q) \neq (q_0, p_0)$ then
 $_ pairs.add(p,q);$

三 つへぐ

・ロト ・四ト ・ヨト ・ヨト

while area(p, p.next, q.next) > area(p, p.next, q) do $\lfloor // \dots$

Martin Krošlák (CTU)

3

イロト 不得下 イヨト イヨト

if $area(p, p.next, q.next) = area(p, p.next, q) \& (p,q) \neq (q_0, p_n)$ then $\ \ pairs.add(p,q.next);$

Martin Krošlák (CTU)

October 24, 2012 13 / 18

3

프 문 문 프 문

p = p.next;pairs.add(p,q);

N A sector	IZ XIZL	(CTII)
Iviartin	r rosiak	(CIU)
		()

æ

590

◆ロト ◆聞ト ◆ヨト ◆ヨト

while
$$area(p, p.next, q.next) > area(p, p.next, q)$$
 do
 $q = q.next;$
if $(p,q) \neq (q_0, p_0)$ then
 $_ pairs.add(p,q);$

while $q \neq p_0$ do main loop $\ \ // \ \dots$

 $p = p_n;$ q = p.next;while area(p, p.next, q.next) > area(p, p.next, q) do | q = q.next; $q_0 = q$: while $q \neq p_0$ do p = p.next;pairs.add(p,q);while area(p, p.next, q.next) > area(p, p.next, q) do q = q.next; if $(p,q) \neq (q_0,p_0)$ then pairs.add(p,q); if area $(p, p.next, q.next) = area(p, p.next, q) \& (p,q) \neq (q_0, p_n)$ then pairs.add(p,q.next);

イロト 不得 トイヨト イヨト ヨー シタウ

Contents

1 Theory

2 Algorithr

- Overview
- Step-by-step
- Pseudocode

イロト イヨト イヨト イヨト

E

DQC

Final notes and summary

- We can find diameter of a set of points in $O(n \log n)$.
 - using convex hull and filtering points that do not form antipodal pairs

3

イロト イポト イヨト イヨト

Final notes and summary

- We can find diameter of a set of points in $O(n \log n)$.
 - using convex hull and filtering points that do not form antipodal pairs
- The algorithm was shown in 2D only.
- What about more dimensions?
 - we can find convex hull in 3D
 - antipodal points can be defined in 3D as well
 - but ...

イロト 不得下 イヨト イヨト

Final notes and summary

- We can find diameter of a set of points in $O(n \log n)$.
 - using convex hull and filtering points that do not form antipodal pairs
- The algorithm was shown in 2D only.
- What about more dimensions?
 - we can find convex hull in 3D
 - antipodal points can be defined in 3D as well
 - but . . .
 - number of antipodal pairs in 3D is $O(N^2)$
 - there is a lot of computation involved
 - $\bullet\,$ brute force will most likely be faster here $\odot\,$

References

- Franco P. Preparata, Michael Ian Shamos, *Computational Geometry: An Introduction*. Springer-Verlag, New York, 2nd Edition, 1988
- Grégoire Malandain, Jean-Daniel Boissonnat, *Computing the Diameter* of a Point Set. INRIA - Institut Natianal de Recherche en Informatique et en Automatique, July 27, 2001

Questions?

Martin Krošlák	(CTU)
----------------	-------

∃ ∽ ९ (~

▲ロト ▲圖ト ▲屋ト ▲屋ト

Questions? Thank you for your attention.

E

590

イロト イヨト イヨト イヨト

OI-OPPA. European Social Fund Prague & EU: We invest in your future.