OP P A

PRA	HA
PRA	$G U E$
$P R A$	$G A$
$P R A$	G

OI-OPPA. European Social Fund Prague \& EU: We invest in your future.

Diameter of a point set

Martin Krošlák

Computer Graphics
Open Informatics
CTU in Prague

October 24, 2012

Contents

(1) Theory

(2) Algorithm

- Overview
- Step-by-step
- Pseudocode
(3) Final notes and summary

Theory

- diameter of a set of points
- maximum distance between any 2 points in the set
- in 2D it is diameter of a bounding circle (n -sphere in general) enclosing all points of the set

Theory

- Problem: Which points to use?
- brute force solution - $\Theta\left(n^{2}\right)$ where n is number of points

Theory

Fact

The diameter of a set is equal to the diameter of its convex hull.

- convex hull typically consists of much fewer points
- in worst case, all points are on convex hull (eg. circular distribution)

Theory

Definition

Given a convex polygons P, a line of support I is a line intersecting P and the interior of P lies to one side of I.

- "tangent" of a convex polygon

Theory

Fact

The diameter of a convex polygon is the greatest distance between its parallel lines of support.

Theory

- If support lines passing two points on convex hull cannot be parallel, these points cannot form diameter!!!

Theory

Definition

A pair of points that allows parallel supporting lines is called antipodal.

- it has been shown, that the number of antipodal pairs is linearly dependent on number of points of convex hull
- specifically, it is at most $3 n / 2$

Contents

(1) Theory
(2) Algorithm

- Overview
- Step-by-step
- Pseudocode

(3) Final notes and summary

Algorithm

Algorithm for finding diameter of a point set:

- construct convex hull of given set of points
- complexity $O(n \log n)$ where n is number of points in the set
- find antipodal pairs
- complexity in 2D is $O(h)$ where h is number of points on the convex hull
- find the diametral pair among antipodal pairs and determine it's length
- complexity $O(p)$ where p is number of antipodal pairs

Algorithm

Find antipodal pairs

- uses two pointers, p and q, which iterate over points of convex hull in counter-clockwise order
- repeatedly calculates area of triangles formed by p, q and points immediately following p and q
- wraps point indexing; point p_{0} is following after p_{n}

Algorithm

Find antipodal pairs
(1) start with $p=p_{n}$ and $q=p_{0}$
(2) repeatedly move q forward until first antipodal pair is found
(3) set q_{0} to current position of q
(9) in main loop, each time q or p is incremented, or when when we find two parallel lines, (p, q) pair is added to antipodal pairs
(6) main loop terminates when whole convex hull has been traversed by q (when $q=p_{0}$)

Algorithm

$$
\begin{aligned}
& p=p_{n} ; \\
& q=p . \mathrm{next} ;
\end{aligned}
$$

Algorithm

while $\operatorname{area}(p, p . n e x t, q . n e x t)>\operatorname{area}(p, p . n e x t, q)$ do
$\llcorner q=q$.next;

Algorithm

while $\operatorname{area}(p, p . n e x t, q . n e x t)>\operatorname{area}(p, p . n e x t, q)$ do
$\llcorner q=q$.next;

Algorithm

while $\operatorname{area}(p, p . n e x t, q . n e x t)>\operatorname{area}(p, p . n e x t, q)$ do
$\llcorner q=q$.next;

Algorithm

$q_{0}=q ;$
while $q \neq p_{0}$ do main loop

Algorithm

$$
p=p . \text { next } ;
$$

Algorithm

pairs.add(p, q);

Algorithm

while $\operatorname{area}(p, p . n e x t, q . n e x t)>\operatorname{area}(p, p . n e x t, q)$ do
$q=q$.next;
if $(p, q) \neq\left(q_{0}, p_{0}\right)$ then pairs.add (p, q);

Algorithm

while $\operatorname{area}(p, p . n e x t, q . n e x t)>\operatorname{area}(p, p . n e x t, q)$ do
$q=q$.next;
if $(p, q) \neq\left(q_{0}, p_{0}\right)$ then pairs.add (p, q);

Algorithm

while $\operatorname{area}(p, p . n e x t, q . n e x t)>\operatorname{area}(p, p . n e x t, q)$ do
$q=q$.next;
if $(p, q) \neq\left(q_{0}, p_{0}\right)$ then pairs.add (p, q);

Algorithm

while $\operatorname{area}(p, p . n e x t, q . n e x t)>\operatorname{area}(p, p . n e x t, q)$ do
$q=q$.next;
if $(p, q) \neq\left(q_{0}, p_{0}\right)$ then pairs.add (p, q);

Algorithm

while $\operatorname{area}(p, p . n e x t, q . n e x t)>\operatorname{area}(p, p . n e x t, q)$ do
$q=q$.next;
if $(p, q) \neq\left(q_{0}, p_{0}\right)$ then pairs.add (p, q);

Algorithm

while $\operatorname{area}(p, p . n e x t, q . n e x t)>\operatorname{area}(p, p . n e x t, q)$ do
$q=q$.next;
if $(p, q) \neq\left(q_{0}, p_{0}\right)$ then pairs.add (p, q);

Algorithm

while $\operatorname{area}(p, p . n e x t, q . n e x t)>\operatorname{area}(p, p . n e x t, q)$ do
$q=q$.next;
if $(p, q) \neq\left(q_{0}, p_{0}\right)$ then pairs.add (p, q);

Algorithm

$$
p=p . \mathrm{next}
$$

Algorithm

pairs.add(p,q);

Algorithm

while $\operatorname{area}(p, p . n e x t, q . n e x t)>\operatorname{area}(p, p . n e x t, q)$ do
$q=q$.next;
if $(p, q) \neq\left(q_{0}, p_{0}\right)$ then pairs.add (p, q);

Algorithm

while $\operatorname{area}(p, p . n e x t, q . n e x t)>\operatorname{area}(p, p . n e x t, q)$ do
$q=q$.next;
if $(p, q) \neq\left(q_{0}, p_{0}\right)$ then pairs.add (p, q);

Algorithm

while $\operatorname{area}(p, p . n e x t, q . n e x t)>\operatorname{area}(p, p . n e x t, q)$ do
$q=q$.next;
if $(p, q) \neq\left(q_{0}, p_{0}\right)$ then pairs.add (p, q);

Algorithm

while $\operatorname{area}(p, p . n e x t, q . n e x t)>\operatorname{area}(p, p . n e x t, q)$ do // ...
if $\operatorname{area}(p, p . n e x t, q . n e x t)=\operatorname{area}(p, p . n e x t, q) \&(p, q) \neq\left(q_{0}, p_{n}\right)$ then
L pairs.add(p,q.next);

Algorithm

if $\operatorname{area}(p, p . n e x t, q . n e x t)=\operatorname{area}(p, p . n e x t, q) \&(p, q) \neq\left(q_{0}, p_{n}\right)$ then pairs.add(p,q.next);

Algorithm

$p=p$.next;
pairs.add(p, q);

Algorithm

while $\operatorname{area}(p, p . n e x t, q . n e x t)>\operatorname{area}(p, p . n e x t, q)$ do
$q=q$.next;
if $(p, q) \neq\left(q_{0}, p_{0}\right)$ then pairs.add (p, q);

Algorithm

while $q \neq p_{0}$ do main loop
L // ...

Algorithm

$$
\begin{aligned}
p & =p_{n} \\
q & =p . \mathrm{next}
\end{aligned}
$$

$$
\text { while } \operatorname{area}(p, p . n e x t, q . n e x t)>\operatorname{area}(p, p . n e x t, q) \text { do }
$$

$$
L q=q \cdot \mathrm{next}
$$

$$
q_{0}=q
$$

while $q \neq p_{0}$ do

$$
p=p . \text { next }
$$

pairs.add (p, q);
while $\operatorname{area}(p, p . n e x t, q . n e x t)>\operatorname{area}(p, p . n e x t, q)$ do

$$
q=q \cdot \mathrm{next}
$$

if $(p, q) \neq\left(q_{0}, p_{0}\right)$ then
L pairs.add (p, q);
if $\operatorname{area}(p, p . n e x t, q . n e x t)=\operatorname{area}(p, p . n e x t, q) \&(p, q) \neq\left(q_{0}, p_{n}\right)$ then
L pairs.add(p,q.next);

Contents

(1) Theory

(2) Algorithm

- Overview
- Step-by-step
- Pseudocode
(3) Final notes and summary

Final notes and summary

- We can find diameter of a set of points in $O(n \log n)$.
- using convex hull and filtering points that do not form antipodal pairs

Final notes and summary

- We can find diameter of a set of points in $O(n \log n)$.
- using convex hull and filtering points that do not form antipodal pairs
- The algorithm was shown in 2D only.
- What about more dimensions?
- we can find convex hull in 3D
- antipodal points can be defined in 3D as well
- but...

Final notes and summary

- We can find diameter of a set of points in $O(n \log n)$.
- using convex hull and filtering points that do not form antipodal pairs
- The algorithm was shown in 2D only.
- What about more dimensions?
- we can find convex hull in 3D
- antipodal points can be defined in 3D as well
- but...
- number of antipodal pairs in 3D is $O\left(N^{2}\right)$
- there is a lot of computation involved
- brute force will most likely be faster here $)^{-1}$

References

Franco P. Preparata, Michael Ian Shamos, Computational Geometry: An Introduction. Springer-Verlag, New York, 2nd Edition, 1988
國 Grégoire Malandain, Jean-Daniel Boissonnat, Computing the Diameter of a Point Set. INRIA - Institut Natianal de Recherche en Informatique et en Automatique, July 27, 2001

Questions?

Questions?

Thank you for your attention.

OP P A

PRA	HA
PRA	$G U E$
$P R A$	$G A$
$P R A$	G

OI-OPPA. European Social Fund Prague \& EU: We invest in your future.

