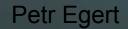


OI-OPPA. European Social Fund Prague & EU: We invest in your future.

k-th order Voronoi diagrams



A4M39VG winter 2012/2013

Outline

- Introduction
- Relation to other VDs
- Direct GVP construction
- Iterative algorithm description
- Questions

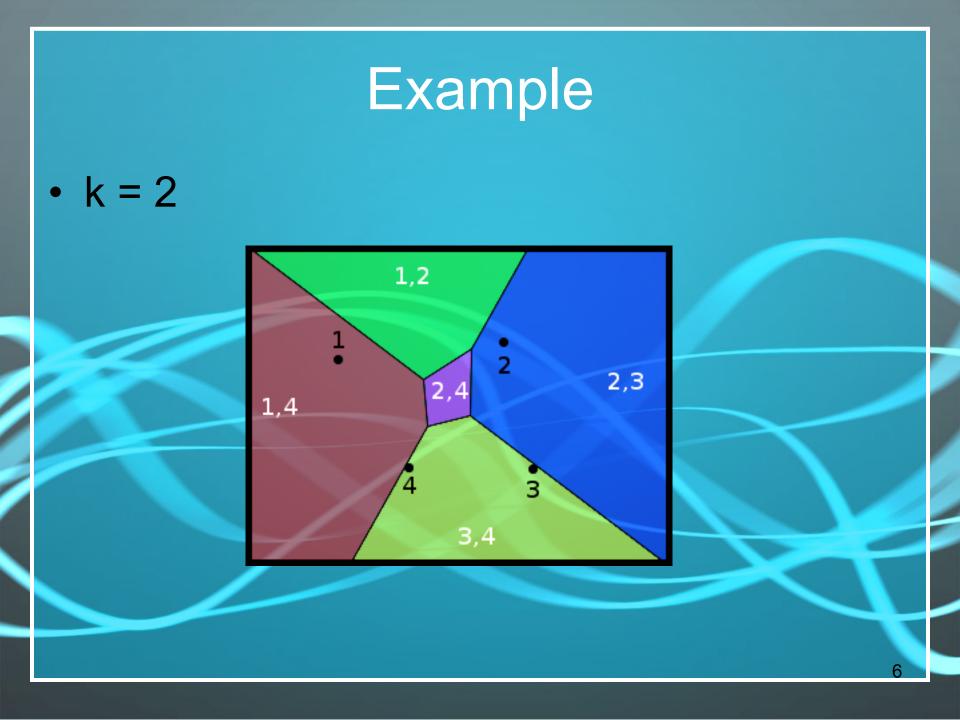
Introduction

k-th order Voronoi diagram

- Also called Higher Order Voronoi Diagram (HOVD)
- Notation $Vor_{\nu}(S)$
- Union of GVPs
- Returns k nearest neighbours by finding the appropriate GVP
- Extendible to higher dimensions
 - 2D case used here

Generalized Voronoi Polygon

- GVP
- Notation V(T)
 - Each site in T closer to point p than any site not in T
 - ie. V({1,2}) = area, where sites 1 and 2 are closer than any other sites
- Always convex
- Can be empty



Relation to other VDs

Ordinary VD

k = 1

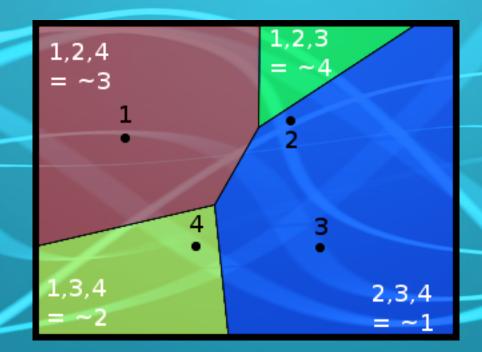
 Vor₁(S) = Ordinary Voronoi diagram



Farthest point VD

k = N - 1

 Vor_{n-1}(S) = Farthest point Voronoi diagram

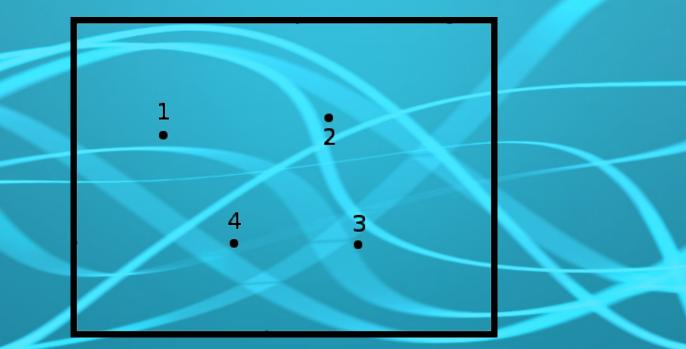


Direct GVP construction

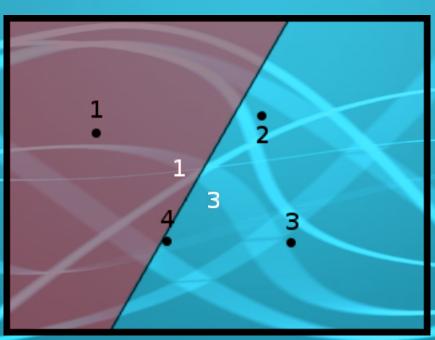
Direct GVP construction

•V(T) = intersection of all halfplanes, except for those created by bisections of T

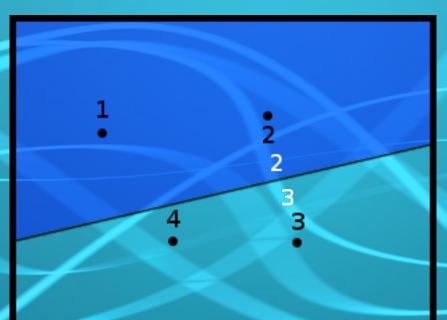
- 1.Compute bisections of each site in *T* with all other sites, except for those in *T*
- 2. Intersect all halfplanes containing the given site
 - The resulting GVP can be empty



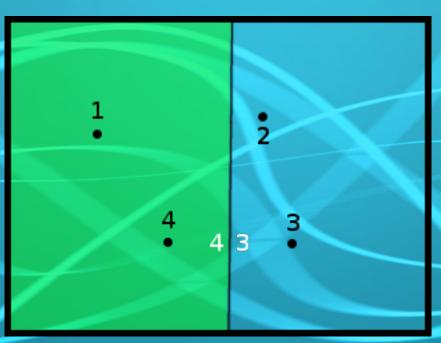
Find bisections between 1 and all others
 – Ignore those within *T*, ie. *H*(1,2) and *H*(1,4)



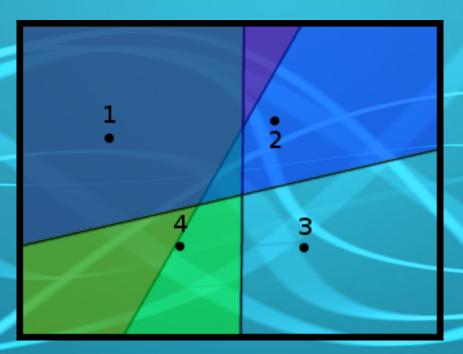
Find bisections between 2 and all others
 – Ignore those within *T*, ie. *H*(2,1) and *H*(2,4)



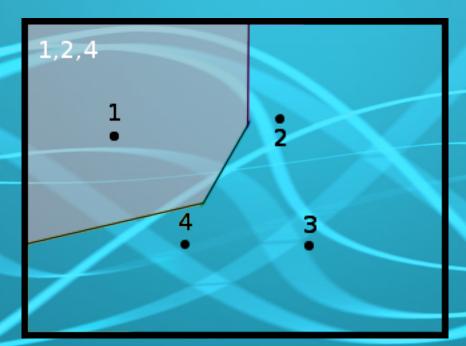
Find bisections between 4 and all others
 – Ignore those within *T*, ie. *H*(4,1) and *H*(4,2)



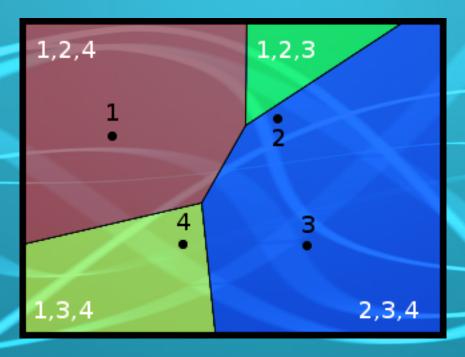
Intersect all the halfplanes



The resulting GVP is found



 Repeat for each combination get the whole diagram



Pros and Cons

- Pros
 - Can construct a single GVP
 - Can construct order-k diagram directly
 - Higher order means less processing
 - Cons
 - $-O(\binom{N}{k})$ time complexity
 - Processing power wasted on empty GVPs

Iterative algorithm

Iterative algorithm

- Computes $Vor_{k}(S)$ from $Vor_{k-1}(S)$
- Idea
 - $\ln Vor_{k-1}(S)$ we already know k-1 closest sites
 - To obtain k closest sites, it's enough to find the missing one

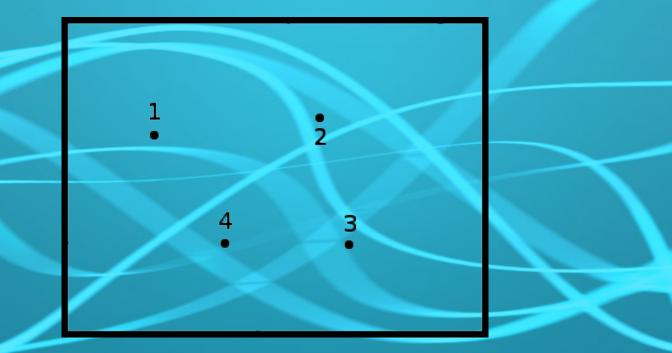
The algorithm

• Start with a known $Vor_{k-1}(S)$ - ie. ordinary $Vor_1(S)$ in the beginning Repartition each GVP of Vor_{k-1}(S) using the next closest site in range Collapse neighbouring cells having the same closest sites Vor_k(S) is obtained

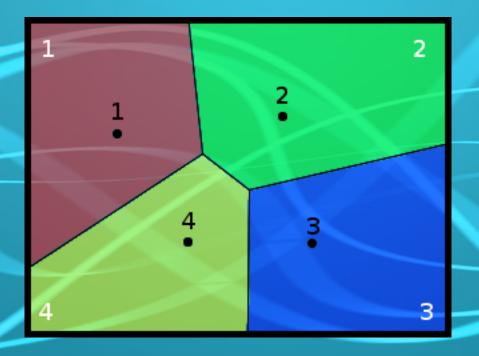
GVP repartitioning

Idea

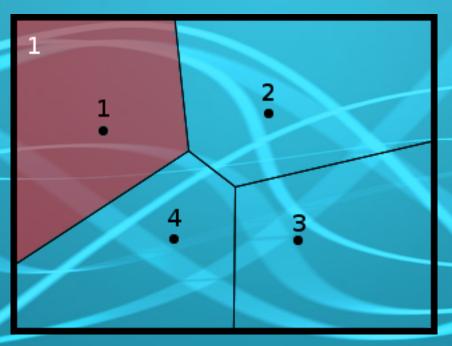
- Intersect V(T) with $Vor_1(S-T)$
- Explanation
 - Ordinary VD created from (S-T) contains, for any location, the closest site not already in T
 - Each given point p located inside V(T) is known to be closest to T
 - This holds even if V(T) is subdivided
 - Subdividing V(T) by Vor₁(S-T) produces regions closest to both T and the next closest site



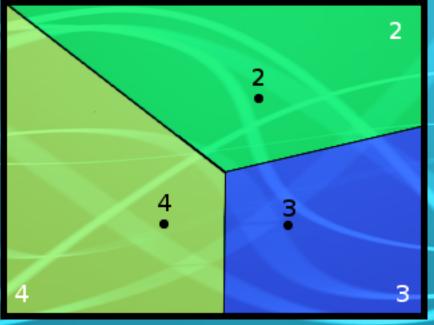
• Start with $Vor_1(S)$



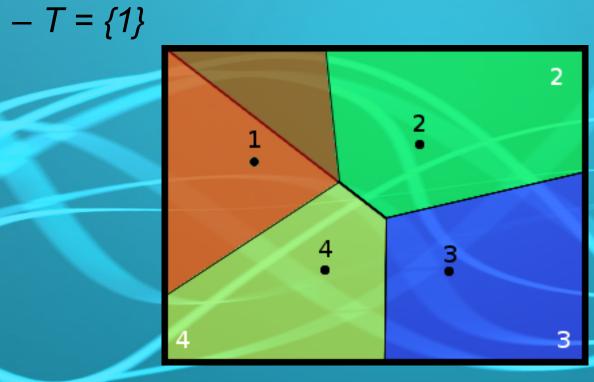
Repartition each GVP Starting with V({1})



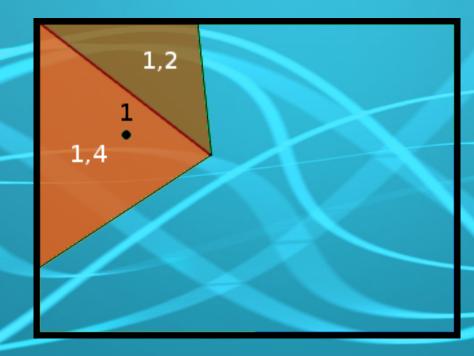
- Compute Vor₁(S-T)
 - $T = \{1\}$, computing $Vor_{1}(\{2,3,4\})$



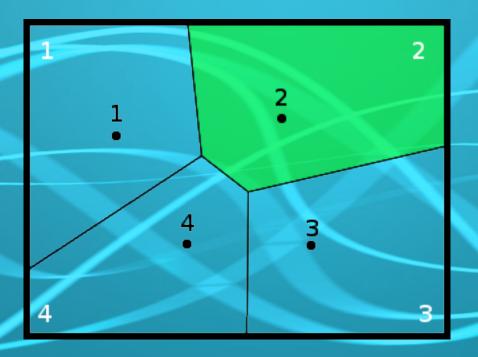
• Intersect V(T) with $Vor_{1}(S-T)$



• New subdivision for V(T) is obtained

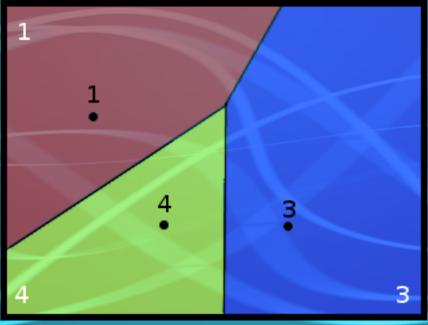


Continue with V(T) *T*={2}

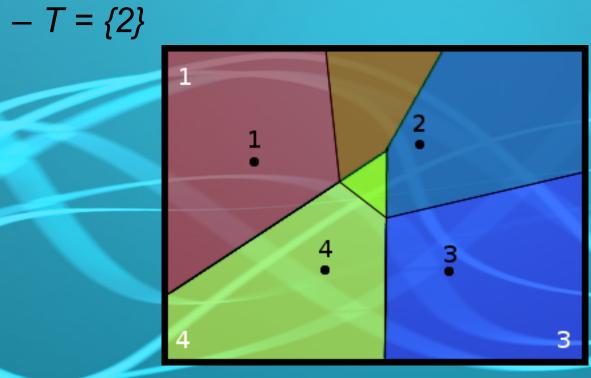


Compute Vor₁(S-T)

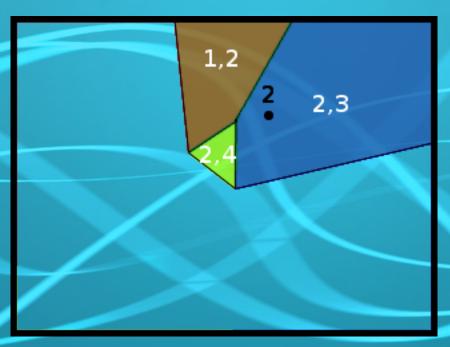
$T = \{2\}$, computing $Vor_1(\{1,3,4\})$



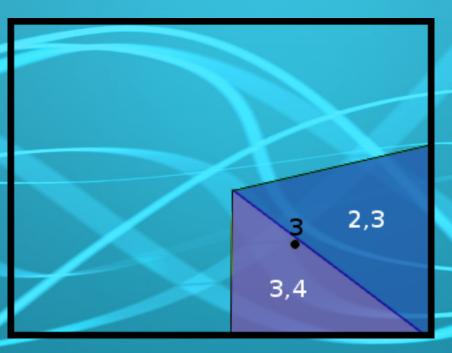
• Intersect V(T) with $Vor_1(S-T)$



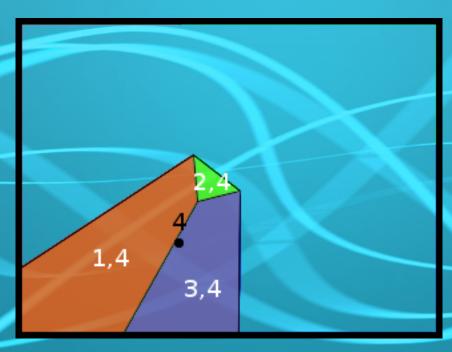
New subdivision for V(T) is obtained T = {2}



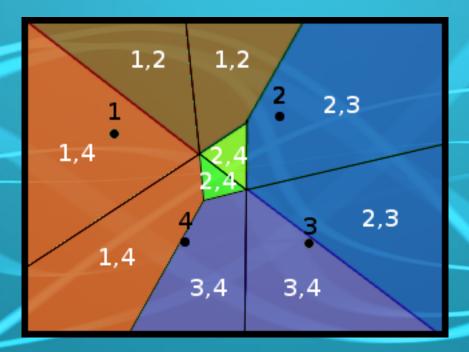
New subdivision for V(T) is obtained T = {3}



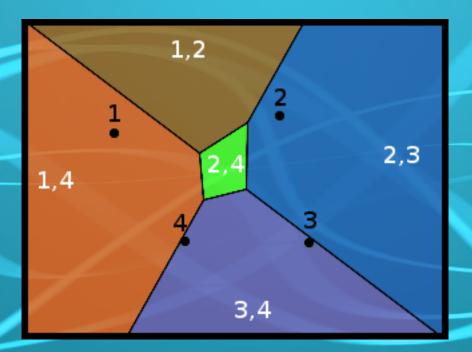
New subdivision for V(T) is obtained T = {4}



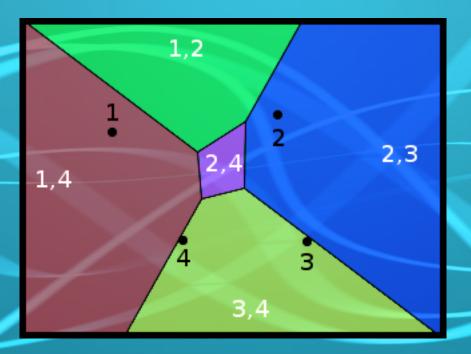
• Collapse neighbouring cells with same T



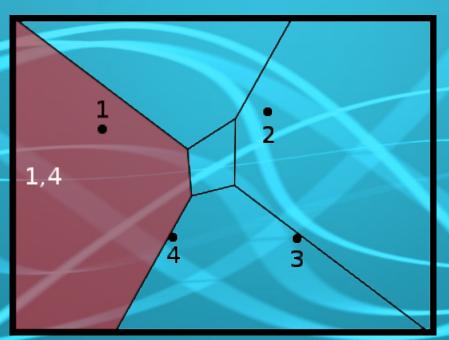
• Collapse neighbouring cells with same T



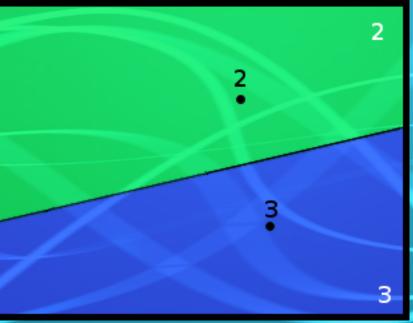
Vor₂(S) is obtained



Repartition each GVP – Starting with V({1,4})



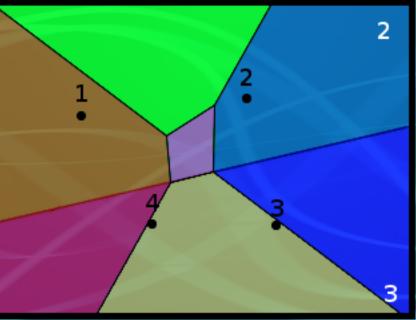
- Compute Vor₁(S-T)
 - $T = \{1,4\}$, computing $Vor_{1}(\{2,3\})$



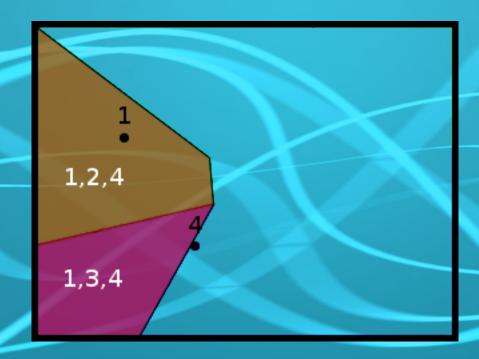
40

• Intersect V(T) with $Vor_1(S-T)$

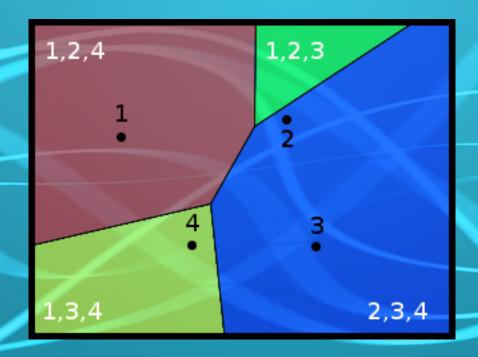




• New subdivision for V(T) is obtained



Repeat previous steps to obtain Vor₃(S)



43

Complexity

 Space -O(k(n-k))• Computing $Vor_{k}(S)$ from $Vor_{k-1}(S)$ -O(k(n-k)) Each of k(n-k) GVPs in Vor_{k-1}(S) needs to be reevaluated Computing Vor_k(S) from scratch $-O(n \log n + k(k(n-k)))$ • n log n to build the first VD, then k iterations taking k(n-k) time each

44

Thanks for your time!

Questions?

References and image sources

- Preperata F.P.- M.I.Shamos: Computational Geometry An Introduction. Berlin, Springer-Verlag, 1985.
- http://www.iitg.ac.in/rinkulu/cg/slides/vor-higherorder.pdf
 R. Inkulu: Computational geometry lecture slides
- http://cw.felk.cvut.cz/lib/exe/fetch.php/misc/projects/oppa_ oi_english/courses/ae4m39vg/lectures/07-voronoi-ii.pdf
 - P. Felkel: Computational geometry lecture slides
- http://www.pollak.org/en/otherstuff/voronoi/
 - Demonstration applet by Andreas Pollak

OI-OPPA. European Social Fund Prague & EU: We invest in your future.