OI-OPPA. European Social Fund Prague \& EU: We invest in your future.

k-th order Voronoi diagrams

Outline

- Introduction
- Relation to other VDs
- Direct GVP construction

Iterative algorithm description
Questions

Introduction

k-th order Voronoi diagram

- Also called Higher Order Voronoi Diagram (HOVD)
- Notation Vor ${ }_{k}(S)$

Union of GVPs

- Returns k nearest neighbours by finding the appropriate GVP
- Extendible to higher dimensions
-2D case used here

Generalized Voronoi Polygon

- GVP
- Notation $V(T)$
- Each site in T closer to point p than any site not in T
-ie. $V(\{1,2\})=$ area, where sites 1 and 2 are closer than any other sites
- Always convex
- Can be empty

Example

- $k=2$

Relation to other VDs

Ordinary VD

- $\mathrm{k}=1$
- Vor $_{1}(S)=$ Ordinary Voronoi diagram

Farthest point VD

- $\mathrm{k}=\mathrm{N}-1$
$-\operatorname{Vor}_{n-1}(S)=$ Farthest point Voronoi diagram

Direct GVP construction

Direct GVP construction

- $V(T)=$ intersection of all halfplanes, except for those created by bisections of T
1.Compute bisections of each site in T with all other sites, except for those in T
2.Intersect all halfplanes containing the given site
- The resulting GVP can be empty

Example - V(\{1,2,4\})

Example - V(\{1,2,4\})

- Find bisections between 1 and all others
- Ignore those within T, ie. $H(1,2)$ and $H(1,4)$

Example - V(\{1,2,4\})

- Find bisections between 2 and all others
- Ignore those within T, ie. $H(2,1)$ and $H(2,4)$

Example - V(\{1,2,4\})

- Find bisections between 4 and all others
- Ignore those within T, ie. $H(4,1)$ and $H(4,2)$

$$
1
$$

4

Example - V(\{1,2,4\})

- Intersect all the halfplanes

Example - V(\{1,2,4\})

- The resulting GVP is found

Example - V(\{1,2,4\})

- Repeat for each combination get the whole diagram

Pros and Cons

- Pros
- Can construct a single GVP
- Can construct order-k diagram directly
- Higher order means less processing

Cons

- O($\binom{N}{k}$) time complexity
- Processing power wasted on empty GVPs

Iterative algorithm

Iterative algorithm

- Computes $\operatorname{Vor}_{k}(S)$ from $\operatorname{Vor}_{k-1}(S)$
- Idea
- In $\operatorname{Vor}_{k-1}(S)$ we already know k-1 closest sites
- To obtain k closest sites, it's enough to find the missing one

The algorithm

- Start with a known $\operatorname{Vor}_{k-1}(S)$
- ie. ordinary $\operatorname{Vor}_{1}(S)$ in the beginning
- Repartition each GVP of $\operatorname{Vor}_{k-1}(S)$ using the next closest site in range
- Collapse neighbouring cells having the same closest sites
- $\operatorname{Vor}_{k}(S)$ is obtained

GVP repartitioning

- Idea
- Intersect $V(T)$ with Vor $_{1}(S-T)$
- Explanation
- Ordinary VD created from (S-T) contains, for any location, the closest site not already in T
- Each given point p located inside $V(T)$ is known to be closest to T
- This holds even if $V(T)$ is subdivided
- Subdividing $V(T)$ by $\operatorname{Vor}_{1}(S-T)$ produces regions closest to both T and the next closest site

Example

Example

- Start with Vor $_{1}(S)$

Example

- Repartition each GVP
- Starting with V(\{1\})

Example

- Compute Vor $_{1}(S-T)$
$-T=\{1\}$, computing $\operatorname{Vor}_{1}(\{2,3,4\})$

Example

- Intersect $V(T)$ with Vor $_{1}(S-T)$
$-T=\{1\}$

Example

- New subdivision for $V(T)$ is obtained

Example

- Continue with $V(T)$
$-T=\{2\}$

Example

- Compute Vor $_{1}(\mathrm{~S}-\mathrm{T})$
$-T=\{2\}$, computing $\operatorname{Vor}_{1}(\{1,3,4\})$

Example

- Intersect $V(T)$ with Vor $_{1}(S-T)$
$-T=\{2\}$

Example

- New subdivision for $V(T)$ is obtained
$-T=\{2\}$

Example

- New subdivision for $V(T)$ is obtained
$-T=\{3\}$

Example

- New subdivision for $V(T)$ is obtained
$-T=\{4\}$

Example

- Collapse neighbouring cells with same T

Example

- Collapse neighbouring cells with same T

Example

- $\operatorname{Vor}_{2}(S)$ is obtained

Example

- Repartition each GVP
- Starting with $V(\{1,4\})$

Example

- Compute Vor $_{1}(S-T)$
$-T=\{1,4\}$, computing $\operatorname{Vor}_{1}(\{2,3\})$

Example

- Intersect $V(T)$ with Vor $_{1}(S-T)$
$-T=\{1,4\}$

Example

- New subdivision for $V(T)$ is obtained

Example

- Repeat previous steps to obtain $\mathrm{Vor}_{3}(\mathrm{~S})$

Complexity

- Space
- O(k(n-k))
- Computing $\operatorname{Vor}_{k}(S)$ from $\operatorname{Vor}_{k-1}(S)$
$-\mathrm{O}(\mathrm{k}(\mathrm{n}-\mathrm{k}))$
- Each of $k(n-k)$ GVPs in $\operatorname{Vor}_{k-1}(S)$ needs to be reevaluated
- Computing $\operatorname{Vor}_{k}(S)$ from scratch
$-O(n \log)+(k(n-k)))$
- n log to build the first VD, then iterations taking $k(n-k)$ time each

Thanks for your time!

Questions?

References and image sources

- Preperata F.P.- M.I.Shamos: Computational Geometry An Introduction. Berlin, Springer-Verlag,1985.
- http://www.iitg.ac.in/rinkulu/cg/slides/vor-higherorder.pdf
- R. Inkulu: Computational geometry lecture slides
- http://cw.felk.cvut.cz/lib/exe/fetch.php/misc/projects/oppa oi_english/courses/ae4m39vg/lectures/07-voronoi-ii.pdf
- P. Felkel: Computational geometry lecture slides
- http://www.pollak.org/en/otherstuff/voronoi/
- Demonstration applet by Andreas Pollak

OI-OPPA. European Social Fund Prague \& EU: We invest in your future.

