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 Slab method 
 O(n2) memory, O(log n) time 

 Monotone chain tree in planar subdivision 
 O(n2) memory, O(log2 n) time 

 Trapezoidal map 
 O(n) expected memory, O(log n) expected time 

 O(n log n) expected preprocessing time 
 Kirkpatrick's Planar point location 
 O(n) memory, O(log n) time 
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1. Data preprocessing 
2. Building structure 
3. Point query 
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Image source: Mount 
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Image source: Preparata 



 Assumption that planar subdivision is a 
triangulation. 

 If not, triangulate each face and label each 
triangular face with the same label as the 
original face. 

 Compute the convex hull and triangulate the 
holes between the subdivision and CH. 

 Put a large triangle around the subdivision 
and connect its vertices with CH. 
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Image source: Mount 



 Find an independent set of vertices with 
degree less than or equal to 8. 

 Remove them from the graph, obtaining 
independent holes. 

 Retriangulate the holes. 
 Repeat the above steps until you are left with 

3 vertices (the large triangle). 
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 Start in the root 
 Find children node containing the point 
 Continue from that node to leaf 
 Point location algorithm in pseudo code : 
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 Lemma: Every planar graph on n vertices 
contains an independent vertex set of size 
1/18n in which each vertex has degree at 
most 8.  The set can be found in O(n) time. 

 Layer T+1 has at most 17/18n vertices of layer 
T. 

 depth = log18/17 n ≈ 12 log n 
 Time complexity is O(log n) 
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 Space complexity = sum up the sizes of 
triangulations. 

 n(1+(17/18)+(17/18)2+(17/18)3+… ≤ 18n 
 (sum of geometric series : S = a1 / 1 – q)  
 Space complexity is O(n) 
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 Very good time and space O complexity 
 Big multiplicative constants – time 12*log(n), 

space 18*n 
 Trapezoidal map is more simple to implement 

and often is faster then Kirkpatrick planar 
location 
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 Mount, D.: Computational Geometry Lecture 
Notes for Spring 2007 

 Franco P. Preparata, Michael I. Shamos: 
Computational Geometry:  An Introduction, 
1985 

 Subhash Suri: Point Location, 
http://www.cs.ucsb.edu/~suri/cs235/Location.pd
f 

 Sandulescu, P.:Kirkpatrick's Point Location Data 
Structure, 
http://cgm.cs.mcgill.ca/~athens/cs507/Projects/2
002/PaulSandulescu/index.html 
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Time for discussion 
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