OI-OPPA. European Social Fund Prague \& EU: We invest in your future.

Kirkpatrick's Planar Point Location

Lukáš Beran

FELCTU PRAGUE
beranlu6@fel.cvut.cz

Presentation plan

- Motivation
- Algorithm steps
- Complexity
- Literature

Motivation

- Slab method
- O(n²) memory, O(log n) time
- Monotone chain tree in planar subdivision
- O(n^{2}) memory, O($\left.\log ^{2} n\right)$ time
- Trapezoidal map
- O(n) expected memory, O(log n) expected time
- O(n $\log n)$ expected preprocessing time
- Kirkpatrick's Planar point location
- O(n) memory, O(log n) time

Algorithm steps

1. Data preprocessing
2. Building structure
3. Point query

Data preprocessing 1

Data preprocessing 2

Data preprocessing 3

Kirkpatrick's Planar point location

Data preprocessing 4

Data preprocessing 5

Data preprocessing - summary

- Assumption that planar subdivision is a triangulation.
- If not, triangulate each face and label each triangular face with the same label as the original face.
- Compute the convex hull and triangulate the holes between the subdivision and CH .
- Put a large triangle around the subdivision and connect its vertices with CH .

Building structure 1

Building structurez

Kirkpatrick's Planar point location

Building structure 3

Kirkpatrick's Planar point location

Building structure 4

Kirkpatrick's Planar point location

Building structure 5

Building structure 6

Building structure 7

Building structure - summary

- Find an independent set of vertices with degree less than or equal to 8.
- Remove them from the graph, obtaining independent holes.
- Retriangulate the holes.
- Repeat the above steps until you are left with 3 vertices (the large triangle).

Point query 1

Point query 2

Point query 3

Point query - summary

- Start in the root
- Find children node containing the point
- Continue from that node to leaf
- Point location alqorithm in pseudo code : procedure POINT-LOCATION
begin if ($z \notin$ TRIANGLE(root)) then print " z belongs to unbounded region" else begin $v:=$ root; while $(\Gamma(v) \neq \varnothing)$ do
for each $u \in \Gamma(v)$ do if $(z \in \operatorname{TRIANGLE}(u))$ then $v:=u$; print v

Complexity

- Lemma: Every planar graph on n vertices contains an independent vertex set of size $1 / 18 \mathrm{n}$ in which each vertex has degree at most 8 . The set can be found in $O(n)$ time.
- LayerT+1 has at most 17/18n vertices of layer T.
- depth $=\log _{18 / 17} n \approx 12 \log n$
- Time complexity is $O(\log n)$

Complexity

- Space complexity = sum up the sizes of triangulations.
- $n\left(1+(17 / 18)+(17 / 18)^{2}+(17 / 18)^{3}+\ldots \leq 18 n\right.$
- (sum of geometric series : $S=a_{1} / 1-q$)
- Space complexity is $O(n)$

Summary

- Very good time and space O complexity
- Big multiplicative constants - time 12* $\log (\mathrm{n})$, space 18*n
- Trapezoidal map is more simple to implement and often is faster then Kirkpatrick planar location

Literature

- Mount, D.: Computational Geometry Lecture Notes for Spring 2007
- Franco P. Preparata, Michael I. Shamos: Computational Geometry: An Introduction, 1985
- Subhash Suri: Point Location, http://www.cs.ucsb.edu/~suri/cs235/Location.pd f
- Sandulescu, P.:Kirkpatrick's Point Location Data Structure, http://cgm.cs.mcgill.ca/~athens/cs507/Projects/2 o02/PaulSandulescu/index.html

Computational geometry

TEXTS AND MONOGRAPHS IN COMPUTER SCIENCE

COMPUTATIONAL GEOMETRY

AN INTRODUCTION

Franco P. Preparata Michael lan Shamos

Thank you for your attention Time for discussion

OI-OPPA. European Social Fund Prague \& EU: We invest in your future.

