CGl

DEPARTMENT OF COMPUTER GRAPHICS AND INTERACTION

ARRANGEMENTS (uspofadani)

PETR FELKEL

FEL CTU PRAGUE

felkel@fel.cvut.cz
http:/Iservice.felk.cvut.cz/courses/X36VGE

Based on [Berg], [Mount]

Version from 16.12.2011

Talk overview

= Arrangements of lines
— Incremental construction
— Topological plane sweep

o A o~ ==

—~ DCGI Felkel: Computational geometry
(2/38)

Line arrangement

= The next most important structure in CG after
CH, VD, and DT

= Possible in any dimension
arrangement of (d-1)-dimensional hyperplanes

= We concentrate on lines in the plane

s Defined on terms of set of lines
(set of points up to now) but

= Typical application is solving problems of point
sets in dual plane

-
A A o == = -
-+ DC I Felkel: Computational geometry
G (3/38) .

Line arrangement

= A finite set L of lines subdivides the plane into a
cell complex, called arrangement A(L)

= Can be defined also for curves & surfaces...

= In plane, arrangement defines a planar graph
— Vertices - intersections of lines (2 or more)

— Edges - Intersection free segments (or rays or lines)
— Faces — convex regions containing no line
(possibly unbounded)

= Formal problem: graph must have bounded edges
— Topological fix: vertex in infinity
— Geometrical fix: BBOX, often enough as abstract

ST E with corners {—oo, —oo}, {0, oo}
+++ +DCGI Felkel: Computational geometry . %

(4138)

Line arrangement

vertex

~. / y

bounding box

= Simple arrangement assumption

= no three lines intersect in a single point
— Careful implementation or symbolic perturbation

= : -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(5/38)

Combinatorial complexity of line arrangement

O O(nZ)
= Given n lines in general position, max numbers are
— Vertices | _|= n(n2—1) - each Wn — 1 others
— Edges n? - n—1 Iintersections create n edges
on each of n lines

— Faces ”(”+1) 1_(nj+n+1 f,
—f

4N
/ % % =f 4> s Bl s

2

- —:_ ——
+++++
-+~ -~ -
—-~ DCGI Felkel: Computational geometry
(6/38)

Construction of line arrangement

(0. Plane sweep method)

— O(n? log n) time and O(n) storage
plus O(n?) storage for the arrangement
(log n - heap access, n® vertices, edges, faces)

1. Incremental method
— O(n?) time and O(n?) storage
— Optimal method
2. Topological plane sweep
— O(n?) time and O(n) storage only
— Does not store the result arrangement
— Useful for applications that may throw the arrangement

> +: - after processing %
Felkel: Computational geometry
DCGI (7/38) : o e |

1. Incremental construction of arrangement

= O(n?) time, O(n?) space
~sSize of arrangement => it is an optimal algorithm

= Not randomized — depends on n only, not on order

= Addlinel;onebyone (i=1..n)

— Find the leftmost intersection with BBOX
among 2(i-1)+4 edges on the BBOX ...O(l)

— Trace the line through the arrangement A(L; ;) and split
the intersected faces ...O(l) — why? See later

— Update the subdivision (cell split) ...0(1)
= Altogether O(n?)

- e —f—
+++++
-+~ -~ -
—~ DCGI Felkel: Computational geometry
(8/38)

1. Incremental construction of arrangement

Arrangement(L)

Input: Set of lines L in general position (no 3 intersect in 1 common point)

Output: Line arrangement A(L) (resp. part of the arrangement stored in
BBOX B(L) containing all the vertices of A(L))

1. Compute the BBOX B(L) containing all the vertices of A(L) ...0(n?)
2. Construct DCEL for the subdivision induced by B(L) ...0(1)
3. fori=1tondo //insertlinel,

4. find edge e, where line |, intersects the BBOX of 2(i-1)+4 edges ...O(i)
5. f = bounded face incident to e

6. while fis in B(L) (f = bounded face — in the BBOX) .. O(??7?)
7. split f and set f to be the next intersected face

8. update the DCEL (split the cell) ...0(1)

- —:_ -
> A o~ —— — '
DCGI Felkel: Computational geometry
(9/38) .

Tracing the line through the arrangement

= Walk around edges of current face (face walking)
= Determine if the line |; intersects this edge

= When intersection found, jump to the face on the
\/ other side of this edge

n=8 lines, 7 faces in the zone, 22 edges tested of max 48

The zone of | Walking the lower part

e EEE - o of the zone
-~ DCGI Felkel: Computational geometry / |

(10/ 38)

Tracing the line through the arrangement

= Number of traversed edges determines the
iInsertion complexity

= Naive estimation would be O(i?) traversed edges
(i faces, ilines per face, i° edges)

= According to the Zone theorem, it is O(i) edges
only!

Zone theorem

= given an arrangement A(L) of n lines in the plane
and given any line | in the plane, the total number

. MOSt 6N. For proof see [Mount, page 69] S
—~ Felkel: Computational geometry : .
DCGI w0) Rel

Cell split

s 2 hew face records, 1 new vertex, 2+2 new half-

edges + update pointers ... O(1)

N ____,E/}\&

Complexity of incremental algorithm

= N iInsertions

= O() = O(n) time for one line insertion
(Zone theorem)

=> Complexity: O(n?) + n.O(i) = O(n?)

bbox edges walked

o A o~ == =

-+ DC I Felkel: Computational geometry

(13/38)

2. Topological plane sweep algorithm

= Complete arrangement needs O(n?) storage

= Often we need just to process each arrangement
element just once — and we can throw It then

= Classical Sweep line algorithm
— needs O(n) storage
— needs log n for heap manipulation in O(n?) event points
=> O(n?log n) algorithm
= Topological sweep line - TSL
— disperses O(log n) factor in time

— array of neighbors and a stack of ready vertices
. ~=> 0(n?) algorithm

S A = ==
-~ -+ -4
-+ DC I Felkel: Computational geometry ;
G (14 /38) .

lllustration from Edelsbrunner & Guibas

— -
Yy SR
(L’ - P b > ?
D . 4:
DCGI Felkel: Computational geometry %
(157 38)

Topological line and cut

Topological line (curve)

(an intuitive notion) c2
= Monotonic line in y-dir
= Intersects each line

exactly once
(as a sweep line) 4

Topological line
Cut in an arrangement A
= IS a sequence of edges c,, C,,...,C,IN A
(one taken from each line), such that for 1 <1 < n-1,
c, and c,, are incident to the same face of A and
c; Is above and c,,, below the face

= Edges not necessarily connected

- =~ -
S A = ==
> -~ -+)
-+ DC I Felkel: Computational geometry ;
G (16/38) s %

Topological plane sweep algorithm

s Starts at the leftmost cut

— Consist of left-unbounded edges of A (ending at —co)
— Computed in O(n log n) time — inverse order of slopes

= The sweep lineis

— pushed from the leftmost cut to the rightmost cut topological

_ sweep line
— Advances in elementary steps
ready

vertex

= Elementary step

= Processing of a ready vertex
(intersection of consecutive edges at their right-point)

— Swaps the order of lines along the sweep line
— |Is always possible (e.g., the point with smallest x)
” earching of smallest x would need O(log n) time

- -
e A =~ =
-+~ -~ -
DCGI Felkel: Computational geometry
(17/38)

The leftmost cut

Slope

Topological line

- —:_ ——
e S =~ == ——
-+~ -~ -
DCGI Felkel: Computational geometry
(18/38)

The cut during the topological plane sweep

Topological line

- —:_ ——
e S =~ == ——
-+~ -~ -
—~ DCGI Felkel: Computational geometry
(19/38) _

How to determine the next right point?

= Elementary step (intersection at edges right-point)
— |s always possible (e.g., the point with smallest x)

— But searching the smallest x would need O(log n) time
— We need O(1) time

= Right endpoint of the edge In the cut results from
— a line of smaller slope intersecting it from above (traced
from L to R) or \
— line of larger slope intersecting it from below. /
= Use Upper and Lower Horizon Trees (UHT, LHT)
— Common segments of UHT and LHT belong to the cut
— Intersect the trees, find pairs of consecutive edges
7 If use the right points as legal steps (push to stack)

—fr
+ —
DCGI Felkel: Computational geometry
(20/38)

Upper and lower horizon tree

= Upper horizon tree (UHT)
— Insert lines in order of decreasing slope

— When two edges meet, keep the edge with higher slope
and trim the edge with lower slope

— To get one tree and not the forest of trees (if not
connected) add vertical line in +oo

— Left endpoints of the edges Iin the cut
do not belong to the tree O O

= Lower horizon tree (LHT) is symmetrical
= UHT and LHT serve for right endpts determination

- —:_ ——
e S =~ == ——
-+~ -~ -
-~ DCGI Felkel: Computational geometry
(21/38) _

Upper horizon tree (UHT) — initial tree

= Insert lines in order of decreasing slope

1
2

4 Slope
5 - -
Topological line
el %
- -+~ -4 4
S o Felkel: Computational geometry
DCGI (221738) - .

Lower horizon tree (LHT) — initial tree

= Insert lines in order of increasing slope

1
2

4 Slope
5 - -
Topological line
T oo ol %
-+~ -+~ -4 4
S o Felkel: Computational geometry .
DCGI o o) RIe

Upper horizon tree (UHT) — init. construction

= Insert lines in order of decreasing slope
= Each new line starts above all the current lines
= The uppermost face = convex polygonal chain

= Walk left to right along the chain
to determine the intersection

= Never walk twice over segment

— Such segment is no longer part of
the upper chain

— O(n) segments in UHT
=> O(n) initial construction

_ . (after nlog n sorting of the lines)
+++ +DCGI Felkel: Computational geometry X R %

(241 38)

new line

Upper horizon tree (UHT) — update

= After the elementary step

= Two edges swap position along
the sweep line

= Lower edge | -
— Reenter to UHT
— Terminate at nearest edge of UHT
— Start in edge below in the current cut
— Traverse the face in CCW order ’

— Intersection must exist, as | has lower-...
slope than the other edge from v
and both belong to the same face

- o —f—
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(257 38)

Ready vertex

Data structures for topological sweep alg.

Topological sweep line algorithm uses 5 arrays:

1. Line equation coefficients — E [1:n]

2. Upper horizon tree — UHT [1:n]
3. Lower horizon tree — LHT [1:n]
4. Order of lines cut by the sweep line — C [1:n]

5. Edges along the sweep line — N [1:n]

6. Stack for ready vertices (events) —-S

(n number of lines)

- =~ -
s A =~ == =
> -~ -+)
-+ DC I Felkel: Computational geometry
G (26 /1 38) .

1) Line equation coefficients E [1:n]

%Xé = Array of line equation coefs. E
: — Contains coefficients a, and b,
of line equations y = ax + b,

6) — E is indexed by the line index
— Lines are ordered according to

Array of line _)
equations E their slope (angle from -90° to
y=ax+h 90°)

oaa A~ W N B
Q
W
O|T|T|T
w

- —:_ —
+++++
-+~ - -+
A DCGI Felkel: Computational geometry
(27138)

2) and 3) — Horizon trees UHT and LHT

Their intersection is
used for searching
of legal steps

(right points)

- the shorter edge wins

UHT array
Delimiting
lines indices

1 1
5 UHT 5 LHT
3 3
4 4
5 Topological line 6 S Topological line g
LHT array = Store pairs of line indices in E
Delimiting that delimit segment [; to the left
lines indices .
and to the right
1 |- | 6= Unlimited line has “indices”
2 |—oo| 1 [o0, +oo]
= One additional vertical line
3 | — 1 e
— prevents the tree from splitting into
4 | —oo 3 forest of trees
5 | —o 4 — is inserted first and never trimmed
' T — S [~oo, +00] for UHT
6 | +oo | — — _is [+o0, —co] for LHT

(28 / 38)

Felkel: Computational geometry %

4) Order of lines cut by sweep line — C [1:n]

= The topological sweep line cuts each line once

= Order of these cuts (along the topological sweep
line) is stored in array C as a sequence of line

Indices
= [For the initial leftmost cut, CUT Lines C
. . Index f -
the order is the same as in E porting lines.
= Index ci addresses I-th line fromtop «c1|1
along the sweep line c2 |2
c3|3
c4 |4
Co |5

- =~ -
s A =~ == =
> -~ -+)
-+ DC I Felkel: Computational geometry
G (291 38) .

5) Edges along the sweep line — N [1:n]

= Edges intersected by the topological sweep line are
stored here (edges along the sweep line)

= Instead of endpoints themselves, we store the
iIndices of lines whose intersections delimit the edge

= Order of these edges IS CUT edges N

Pairs of line indices

the same as in C delimiting the edge
(this Is the way used In c1 [—oo] 2
the original paper) c2 | —oo| 1

= Index ci addresses i-th |~ °
c4d | —oo| 5

edge from top along the . —1—

sweep line

- S~ =
A A o == =
-+ DC I Felkel: Computational geometry
G (30/38) .

6) Stack S

= The exact order of events is not important
= Alg. can process any of the “ready vertex”

= Event queue Is therefore replaced by a stack
(faster — O(1) instead of O(log n) of the queue)

= The stack stores just the upper edge ¢, ~ 21¢KS

Ready vertex
. . first edge idx
= Intersection in the ready vertex b
IS computed between stored ¢; and c;,,

c4
cl

- S~ =
A A o == =
-+ DC I Felkel: Computational geometry
G (31/38) .

Topological sweep line demo

1
Ziik\ff%if;;;; Input
= setoflines L in the plane

= ordered in increasing slope
| (-90° to 90°), simple,

Array of line _

equations E not vertical

y=ax+Dh . .
= line parameters in array E

a, | by

2

o B~ W N B
Q
w

O |0 |0 |T
w

- —:_ ——
e S =~ == ——
-+~ -~ -
S o DCGI Felkel: Computational geometry
(32/38) "

1. Initial leftmost cut - C

3% cut = Store the line indices into the
3 Cut lines array C

37, o .
4% in increasing slope order

5 _5 N
Topological line

Array of line CUT Lines C
equations E Indexes of sup-
y=ax+b porting lines
1la,|b, cl|1l
2ay|b, c2|2
3|38z | bs c3|3
41a,|b, c4 |4
5|85 | bs c5(5

—- —:_ —_—
A A —f = ——
-+ -+ 4
= ol DC GI Felkel: Computational geometry

1. Initial leftmost cut - N

4C

5 _5 N
Topological line

Array of line

equations E
y=ax+b

b,

2

w

N

b
b
b
b

5

>0 A W N P

indices of lines

+

DCGI

Prepare array N for endpoints of
the cutted edges (resp. for line
Indices delimiting these edges)

CUT edges N CUT Lines C

Pairs of line indices
delimiting the edge

cl
c2
c3
c4
CS

818 [8 (8 |8

cl
c2
c3
c4
CS

Indexes of sup-
porting lines

G WIN|F

Felkel: Computational geometry

(34 /38)

R

2a) Compute Upper Horizon Tree - UHT

1 C 1

2L _euT 2 UHT
C3

e :

4_¢ 451

5 _5 N
Topological line

Array of line UHT array

Topological line 6

CUT edges N CUT Lines C

Indexes of sup-
porting lines

equations E Delimiting Pairs of line indices
y=ax+b lines indices delimiting the edge
1la,|b, 1|—ocof 2 Cl | —oo| o
2|a,|b, 2|—00| 5 C2 | —©| o0
3|as| b, 3|—o| 5 c3 | —oo|
41a,|b, 4| —oo| 5 cd | —oo| oo
5|8z | bs S| —x| 6 c5 | —oo| o
6| —oo| +oo

Inserted first, never changed

cl
c2
c3
c4
CS

G WIN|F

Felkel: Computational geometry

(35/38)

R

2b) Compute Lower Horizon Tree - LHT

&% cut 2 UHT > LHT
%
C3
3 ¢, 3 3
4_ < 4 4
5 75 o 5 o 5 o v
Topological line Topological line 6 Topological line 6
Array of line UHT array LHT array CUT edges N CUT Lines C Stack S
equationsE Delimiting Delimiting Pairs of line indices Indexes of sup- Ready vertex
y=ax+b lines indices lines indices delimiting the edge porting lines first edge idx
1la,|b,| 1|-| 2| 1|-0| 6] cl|—o| | c1|1
2|a,|b,| 2|-ow| 5| 2|-| 1| c2|—o| o] c2]|2
3lag|b; 3|—w| 5] 3|—oc0| 1| €3 |- oo 3|3
4|a,|b,| 4|-oo| 5| 4|-| 3| c4|-»| | c4|4
6| —oo| too 6| +oo | —o0

R sl Inserted first, never changed
- -+~ -4
DCGI Felkel: Computational geometry _
(36/38) : D

3a) Determine right delimiters of edges - N

18 curt 1 UHT 1

2 2 2
Cs

3 % 3 3

4 z 4 451

5 5 N
Topological line

Array of line UHT array

5 Topological line

LHT array CUT edges N CUT Lines C

Pairs of line indices
delimiting the edge

equations E Delimiting Delimiting
y=ax+h lines indices lines indices
1la,|b,| 1]|-| 2| 1|-w| 6] c1
2|a,|b,| 2|-w| 5| 2|-w| 1] c2
3|as|by] 3|-o| 5| 3|-ow| 1| c3
5|ag|b;| 5|-| 6| 5|-ow| 4] c5
6| —o0| +oo 6| +oo
- =
. 4

6

—oo| 2
—oo| 1
—wo| 5
—o| 5
—oo| 4

Felkel: Computational geometry

(37/38)

LHT

Topological line

Indexes of sup-
porting lines

cl
c2
c3
c4
CS

G WIN|F

_oo/‘
Intersect the trees — take the shorter edge

6
Stack S

Ready vertex
first edge idx

3b) Ready vertices =

int. of neighbors — S

18 curt 1 UHT 1

2 2 2
Cs

3 %?3/ 3 3

4 Co 4 451

5 Topological line

Array of line UHT array

equations B e T dioes
y=ax+hb

1(a;|b; 1|—oo| 2
2|a,|b, 2|—o| 5
3lag|b; 3|—oo| 5
41a,|b, 4| —c0| 5
5|ag|bg S5|—o0| 6
6| —oco| +c0

5 Topological line

6

LHT

Topological line

6

LHT array CUT edges N CUT Lines C Stack S

Indexes of sup-
porting lines

O O A W DN P

Delimiting Pairs of line indices
lines indices delimiting the edge
— 00 6| cl |—oo /2
—00 1] c2 | — \’lj
—00 1] c3 | —
—00 3] c4 |-
—00 4] c5 | —o \4
+00 | —00

C
c2

Felkel: Computational geometry

(38/38)

Ready vertex
first edge idx

Intersections of neighbors - into stack %

) wiel

4a) Pop ready vertex from S — process c4

18 cut 1 UHT 1

2 2 2
Cs

3 %?3/ 3 3

4 z 4 451

5 5 o
Topological line

Array of line UHT array

equations B e T dioes
y=ax+hb

1(a;|b; 1|—oo| 2
2|a,|b, 2|—of 5
3lag|b; 3|—o| 5
41a,|b, 4| —co| 5
5|ag|bg S|—o0| 6
6| —oof| +c0

S Topological line

6

LHT

Topological line

v
6

LHT array CUT edges N CUT Lines C Stack S

Indexes of sup-
porting lines

o O A W DN P

Delimiting
lines indices
—o | 6] cl
—oo | 1] c2
—oo | 1] c3
—o | 3| c4
—oo | 4] c5
+00 | —o0

Pairs of line indices
delimiting the edge

—oo| 2
—00

—0oo| S
—0oo| S
—oo| 4

cl
c2
c3
cd
(13

G~ |WIN|PF

Felkel: Computational geometry

(39/38)

Ready vertex
first edge idx

c4
cl

R

4b) Swap lines ¢4 and ¢c5 —-swap 4 and 5

18 cut 1 UHT 1

2 2 2
Cs

3 %?3/ 3 3

4 z 4 451

5 5 N
Topological line

Array of line UHT array

equations B e T dioes
y=ax+hb

1(a;|b; 1|—oo| 2
2|a,|b, 2|—of 5
3lag|b; 3|—o| 5
41a,|b, 4| —co| 5
5|ag|bg S|—o0| 6
6| —oof| +c0

S Topological line

6

LHT

Topological line

6

LHT array CUT edges N CUT Lines C Stack S

Indexes of sup-
porting lines

o O A W DN P

Delimiting
lines indices
—o | 6] cl
—oo | 1] c2
—oo | 1] c3
—o | 3| c4
—oo | 4] c5
+00 | —o0

Pairs of line indices
delimiting the edge

|k~ |01

cl
c2
c3
cd
(13

AW |IN]|PF

Felkel: Computational geometry

(40 / 38)

Ready vertex
first edge idx

cl

R

4c) Update the horizon trees — UHT and LHT

3
4

W
C

5 5 N
Topological line

Array of line UHT array

equations E

o B~ W N B

y=ax+Db

a, | by

2

Q
w

O |0 |0 |T
w

N
o O A WO N P

Delimiting
lines indices

OO | O[O0

+ 00

5 Topological line

Reentered

part

o—e 6

N

o~ W

Topological line

o—e
LHT

v
6

LHT array CUT edges N CUT Lines C Stack S

Indexes of sup- Ready vertex

O O A W DN P

Delimiting
lines indices

—o0o| 6] cl

—oo | 1| c2

—oo| 1] c3
5| 3| c4
4| 3| ¢S5

+00 | —00

Pairs of line indices
delimiting the edge

—o| 2
—o| 1
—w| 5§
—o| 4
—o| 5

porting lines

cl
c2
c3
c4
CS

AhAlOa|lwWw|IN]|F

upper edge id

cl

Felkel: Computational geometry

(41/38)

R

4d) Determine new cut edges endpoints — N

1
5 LHT
3
Reentered 4
5 Topological line 5 Topological line opart‘ 6 S Topological line g
Array of line UHT array LHT array CUT edges N CUT Lines C Stack S
equationsE Delimiting Delimiting Pairs of line indices Indexes of sup- Ready vertex
y=ax+b lines indices lines indices delimiting the edge porting lines upper edge id»
1|a,|b, 1{=c0| 2| 1| —c0o| 6] Ccl |—-c0| 2| cl|1
2|a,|b, 2 | —o0 5 2| —o0 1| c2 |—o0| 1] c2|2
3|az| by 3|-c0| 5| 3| —co| 1] €3 |-c0o| 5| c3]|3
41a,|b,| 4| 5| 6] 4| 3 3><c4 4| 3| c4|5
5lag|bs| 5| 4| 6] 5| 4| 3[*5| 5| 3| c5|4 cl
6 | —co | +o0 6| +oo | —o0
3 /‘

- \Z 7 =
- o —f— 3
= = A+ 4 Intersect the trees — take the shorter edge
-+ + —+ 3
DCGI Felkel: Computational geometry /
(421 38)

4e) Intersect with neighbors — push into S

1
5 LHT
3
Reentered 4
5 Topological line 5 Topological line OFEI‘ 6 S Topological line g
Array of line UHT array LHT array CUT edges N CUT Lines C Stack S
equationsE -Delir-niti-ng -Delir_niti_ng Pai_rs'o_fline indices Index_esofsup- Readyvertgx
y=ax+b lines indices lines indices delimiting the edge porting lines upper edge id>
1(a;|b; 1l |—c0 2 1| —o0 6] cl|—-o| 2] c1]|1
2a,|b, 2|—c0| 5| 2| —o0 1] c2 |—co| 1| c2|2
3la,|by| 3|-w| 5| 3| -| 1| 8 |-|(5) c373]
4la,|b,| 4| 5| 6| 4| 5| 3| c4 4(27c5\/c3
5la.|b;| 5| 4| 6| 5| 4| 3| 5| 5| 3| 5|4 c1
6| —oco | +o0 6| +oo | —c0

Intersections of neighbors - into stack

- e —f—
e S =~ == ——
-+~ -~ -
DCGI Felkel: Computational geometry
(43/38)

4a) Pop ready vertex from S — process c3

1
UHT 5 LHT
3
4
5 Topological line 5 Topological line 6 S Topological line g
Array of line UHT array LHT array CUT edges N CUT Lines C Stack S
equationsE Delimiting Delimiting Pairs of line indices Indexes of sup- Ready vertex
y=ax+b lines indices lines indices delimiting the edge porting lines first edge idx
1la,|b,| 1|-| 2| 1| -o| 6] cl|-o| 2| c1|1
2|a,|b, 2 | —o0 5 2| —o0 1] c2|—-c0| 1] 2|2
3|as|bs 3| —c0 5 3| —o0 1] c3|—-0| 5 033\
41a,|b, 41 5| 6] 4 5| 3| c4| 4| 3| c4|5 c3
5| ag | bsg 5/ 4| 6| 5 31 <5+ 5} 3} «c5|4 cl
6 | —oo | +oo 6| too | —oc0

- —:_ ——
e S =~ == ——
-+~ -~ -
DCGI Felkel: Computational geometry
(441 38)

4b) Swap lines ¢4 and ¢c5 —-swap 4 and 5

1
UHT 5 LHT
3
4
5 Topological line 5 Topological line 6 S Topological line g
Array of line UHT array LHT array CUT edges N CUT Lines C Stack S
equationsE Delimiting Delimiting Pairs of line indices Indexes of sup- Ready vertex
y=ax+b lines indices lines indices delimiting the edge porting lines first edge idx
1la,|b,| 1|-| 2| 1| -o| 6] cl|-o| 2| c1|1
2|a,|b, 2 | —o0 5 2| —o0 1] c2|—-c0| 1] 2|2
3lay|by| 3|-| 5| 3| - 1| 3| 4| 3| c3|5
4la,|b,| 4| 5| 6] 4| 5| 3| c4|-| 5| c4|3
5| ag | bsg 5/ 4| 6| 5 31 <5+ 5} 3} «c5|4 cl
6 | —oo | +oo 6| too | —oc0

- —:_ ——
e S =~ == ——
-+~ -~ -
DCGI Felkel: Computational geometry
(45/38)

4c) Update the horizon trees — UHT and LHT

UHT > LHT
3
4
5 Topological line 5 Topological line 6 S Topological line g
Array of line UHT array LHT array CUT edges N CUT Lines C Stack S
equationsE Delimiting Delimiting Pairs of line indices Indexes of sup- Ready vertex
y=ax+b lines indices lines indices delimiting the edge porting lines first edge idx
1la,|b,| 1|-| 2| 1| -o| 6] cl|-o| 2| c1|1
2|a,|b, 2 | —o0 5 2| —o0 1] c2|—-c0| 1] 2|2
3|as| b, 3| 5| 4| 3 5| 1| c3| 4| 3| c3|5
41a,|b, 41 5| 6] 4 5| 3| c4|—-c0| 5| c4|3
5|ag|bs 5/ 3| 6| 5 3| 1] c5| 5| 3| c5|4 cl
6 | —oo | +oo 6| too | —oc0

- —:_ ——
e S =~ == ——
-+~ -~ -
DCGI Felkel: Computational geometry
(46 / 38)

4d) Determine new cut edges endpoints

1
UHT 5 LHT

3

4
5 Topological line S Topological line 6 S Topological line g
Array of line UHT array LHT array CUT edges N CUT Lines C Stack S
equationsE Delimiting Delimiting Pairs of line indices Indexes of sup- Ready vertex
y=ax+b lines indices lines indices delimiting the edge porting lines first edge idx
1la,|b,| 1|-| 2| 1| -o| 6] cl|-o| 2| c1|1
2|a,|b, 2 | —o0 5 2| —o0 1] c2|—-c0| 1] 2|2
3|az| by 3| 5| 4] 3| S| 1f(.3| 3| 1| c3|5
41a,|b,| 4| 5| 6] 4 53>Zc454c43
5|ag|bs 5/ 3| 6| 5 3| 1] c5| 5| 3| c5|4 cl

6 | —oo | +oo 6| too | —oc0
=V /‘

. & — <
= = A+ 4 Intersect the trees — take the shorter edge
-+ + —+ 3
DCGI Felkel: Computational geometry /
(471 38)

4e) Intersect with neighbors — push into S

UHT > LHT

3

4
5 Topological line S Topological line 6 S Topological line g
Array of line UHT array LHT array CUT edges N CUT Lines C Stack S
equationsE Delimiting Delimiting Pairs of line indices Indexes of sup- Ready vertex

y=ax+b lines indices lines indices delimiting the edge porting lines first edge idx
1la,|b,| 1|-| 2| 1| -o| 6] cl|-o| 2| c1|1
2|a,|b, 2 | —o0 5 2| —o0 1] c2|—-c0| 1] 2|2
3|az| by 3| 5| 4| 3| S| 1] c3| 3| 1| c3|5
4la,|b,| 4| 5| 6| 4| 5 3\(:4 5| (4| cal 3| — -+ c4
5|ag|bs 5/ 3| 6| 5 3| 1| c5| 5| (3]|)Ycor4 cl
6 | —oo | +oo 6| too | —oc0

- —:_ ——
e S =~ == ——
-+~ -~ -
DCGI Felkel: Computational geometry
(48/38)

Topological sweep algorithm

TopoSweep(L)
Input: Set of lines L sorted by slope (-90° to 90°), simple, not vertical
Output: All parts of an Arrangement A(L) detected and then destroyed
1. Let C be the initial (leftmost) cut — lines in increasing order of slope
2. Create the initial UHT and LHT incrementally:
a) UHT by inserting lines in decreasing order of slope
b) LHT by inserting lines in increasing order of slope
3. By consulting UHT and LHT
a) Determine the right endpoints N of all edges of the initial cut C
b) Store neighboring lines with common endpoints into stack S
(ready vertices)
4. Repeat until stack not empty
a) Pop next ready vertex from stack S (its upper edge c;)
b) Swap these lines within the cut C (¢, <->c;,,)
c) Update the horizon trees UHT and LHT
d) Consulting UHT and LHT determine new cut edges endpoints N

_ _~~e) If new neighboring edges share an endpoint -> push them %
> -~ -+
-~ Felkel: Computational geometry
DCGI (49/38)

Getting of cut edges from UHT and LHT

= forlinesi=1ton

— Compare UHT and LHT edges on line |

— Set the cut lying on edge i to the shorter edge of these
= Order of the cuts along the sweep line

— Order changes at the intersection v only (neighbors)

— Order of remaining cuts not incident with intersection v
does not change

= After changes of the order, test the neighbors for
Intersections

— Store Iintersections right from sweep line into the stack

- e —f—
+++++
-+~ -~ -
—~ DCGI Felkel: Computational geometry
(50/38)

Complexity

= O(n?) intersections
=> O(n?) events (elementary steps)

= O(1) amortized time for one step
=> O(n?) time for the algorithm

Amortized time

even though a single elementary step can take
more than O(1) time, the total time needed to
perform O(n?) elementary steps is O(n?), hence
the average time for each step is O(1).

-
s A =~ == =
> -~ -+)
-+ DC I Felkel: Computational geometry
G (51/38) .

References

[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:
Computational Geometry: Algorithms and Applications, Springer-Verlag,
3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5,
Chapters 8., http://www.cs.uu.nl/gecbook/

[Mount] David Mount, - CMSC 754: Computational Geometry, Lecture Notes for
Spring 2007, University of Maryland, Lectures 8,15,16,31, and 32.
http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml

[Edelsbrunner] Edelsbrunner and Guibas. Topologically sweeping an arrangement.
TR 9, 1986, Digital www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-
9.pdf

[Rafalin] E. Rafalin, D. Souvaine, I. Streinu, "Topological Sweep in Degenerate
cases", in Proceedings of the 4th international workshop on Algorithm
Engineering and Experiments, ALENEX 02, in LNCS 2409, Springer-
Verlag, Berlin, Germany, pages 155-156.
http://www.cs.tufts.edu/research/geometry/other/sweep/paper.pdf

s e e = = L
DCGI Felkel: Computational geometry

4 i { - 4 4 } b 4 4 -pe . — _:, _!_

(52/38) - S .

