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Talk overview

= Arrangements of lines
— Incremental construction
— Topological plane sweep
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Line arrangement

= The next most important structure in CG after
CH, VD, and DT

= Possible in any dimension
arrangement of (d-1)-dimensional hyperplanes

= We concentrate on lines in the plane

s Defined on terms of set of lines
(set of points up to now) but

= Typical application is solving problems of point
sets in dual plane
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Line arrangement

= A finite set L of lines subdivides the plane into a
cell complex, called arrangement A(L)

= Can be defined also for curves & surfaces...

= In plane, arrangement defines a planar graph
— Vertices - intersections of lines (2 or more)

— Edges - Intersection free segments (or rays or lines)
— Faces  — convex regions containing no line
(possibly unbounded)

= Formal problem: graph must have bounded edges
— Topological fix: vertex in infinity
— Geometrical fix: BBOX, often enough as abstract

ST E with corners {—oo, —oo}, {0, oo}
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Line arrangement

vertex

~. / y

bounding box

= Simple arrangement assumption

= no three lines intersect in a single point
— Careful implementation or symbolic perturbation
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Combinatorial complexity of line arrangement

O O(nZ)
= Given n lines in general position, max numbers are
— Vertices | _|= n(n2—1) - each Wn — 1 others
— Edges n? - n—1 Iintersections create n edges
on each of n lines

— Faces ”(”+1) 1_(nj+n+1 f,
—f
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Construction of line arrangement

(0. Plane sweep method)

— O(n? log n) time and O(n) storage
plus O(n?) storage for the arrangement
(log n - heap access, n® vertices, edges, faces)

1. Incremental method
— O(n?) time and O(n?) storage
— Optimal method
2. Topological plane sweep
— O(n?) time and O(n) storage only
— Does not store the result arrangement
— Useful for applications that may throw the arrangement

> +: - after processing %
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1. Incremental construction of arrangement

= O(n?) time, O(n?) space
~sSize of arrangement => it is an optimal algorithm

= Not randomized — depends on n only, not on order

= Addlinel;onebyone (i=1..n)

— Find the leftmost intersection with BBOX
among 2(i-1)+4 edges on the BBOX ...O(l)

— Trace the line through the arrangement A(L; ;) and split
the intersected faces ...O(l) — why? See later

— Update the subdivision (cell split) ...0(1)
= Altogether O(n?)
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1. Incremental construction of arrangement

Arrangement( L )

Input:  Set of lines L in general position (no 3 intersect in 1 common point)

Output: Line arrangement A(L) (resp. part of the arrangement stored in
BBOX B(L) containing all the vertices of A(L) )

1. Compute the BBOX B(L) containing all the vertices of A(L) ...0(n?)
2. Construct DCEL for the subdivision induced by B(L) ...0(1)
3. fori=1tondo //insertlinel,

4. find edge e, where line |, intersects the BBOX of 2(i-1)+4 edges ...O(i)
5. f = bounded face incident to e

6. while fis in B(L) (f = bounded face — in the BBOX) .. O(??7?)
7. split f and set f to be the next intersected face

8. update the DCEL (split the cell) ...0(1)
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Tracing the line through the arrangement

= Walk around edges of current face (face walking)
= Determine if the line |; intersects this edge

= When intersection found, jump to the face on the
\/ other side of this edge

n=8 lines, 7 faces in the zone, 22 edges tested of max 48

The zone of | Walking the lower part

e EEE - o of the zone
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Tracing the line through the arrangement

= Number of traversed edges determines the
iInsertion complexity

= Naive estimation would be O(i?) traversed edges
(i faces, ilines per face, i° edges)

= According to the Zone theorem, it is O(i) edges
only!

Zone theorem

= given an arrangement A(L) of n lines in the plane
and given any line | in the plane, the total number

. MOSt 6N.  For proof see [Mount, page 69] S
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Cell split

s 2 hew face records, 1 new vertex, 2+2 new half-

edges + update pointers ... O(1)
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Complexity of incremental algorithm

= N iInsertions

= O() = O(n) time for one line insertion
(Zone theorem)

=> Complexity: O(n?) + n.O(i) = O(n?)

bbox edges walked
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2. Topological plane sweep algorithm

= Complete arrangement needs O(n?) storage

= Often we need just to process each arrangement
element just once — and we can throw It then

= Classical Sweep line algorithm
— needs O(n) storage
— needs log n for heap manipulation in O(n?) event points
=> O(n?log n) algorithm
= Topological sweep line - TSL
— disperses O(log n) factor in time

— array of neighbors and a stack of ready vertices
. ~=> 0(n?) algorithm
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lllustration from Edelsbrunner & Guibas

— -
Yy SR
(L’ - P b > ?
D . 4:
DCGI Felkel: Computational geometry %
(157 38)



Topological line and cut

Topological line (curve)

(an intuitive notion) c2
= Monotonic line in y-dir
= Intersects each line

exactly once
(as a sweep line) 4

Topological line
Cut in an arrangement A
= IS a sequence of edges c,, C,,...,C,IN A
(one taken from each line), such that for 1 <1 < n-1,
c, and c,, are incident to the same face of A and
c; Is above and c,,, below the face

= Edges not necessarily connected
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Topological plane sweep algorithm

s Starts at the leftmost cut

— Consist of left-unbounded edges of A (ending at —co)
— Computed in O(n log n) time — inverse order of slopes

= The sweep lineis

— pushed from the leftmost cut to the rightmost cut topological

_ sweep line
— Advances in elementary steps
ready

vertex

= Elementary step

= Processing of a ready vertex
(intersection of consecutive edges at their right-point)

— Swaps the order of lines along the sweep line
— |Is always possible (e.g., the point with smallest x)
” earching of smallest x would need O(log n) time
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The leftmost cut

Slope

Topological line
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The cut during the topological plane sweep

Topological line
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How to determine the next right point?

= Elementary step (intersection at edges right-point)
— |s always possible (e.g., the point with smallest x)

— But searching the smallest x would need O(log n) time
— We need O(1) time

= Right endpoint of the edge In the cut results from
— a line of smaller slope intersecting it from above (traced
from L to R) or \
— line of larger slope intersecting it from below. /
= Use Upper and Lower Horizon Trees (UHT, LHT)
— Common segments of UHT and LHT belong to the cut
— Intersect the trees, find pairs of consecutive edges
7 If use the right points as legal steps (push to stack)

—fr
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Upper and lower horizon tree

= Upper horizon tree (UHT)
— Insert lines in order of decreasing slope

— When two edges meet, keep the edge with higher slope
and trim the edge with lower slope

— To get one tree and not the forest of trees (if not
connected) add vertical line in +oo

— Left endpoints of the edges Iin the cut
do not belong to the tree O O

= Lower horizon tree (LHT) is symmetrical
= UHT and LHT serve for right endpts determination
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Upper horizon tree (UHT) — initial tree

= Insert lines in order of decreasing slope

1
2

4 Slope
5 - -
Topological line
el %
- -+~ -4 4
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Lower horizon tree (LHT) — initial tree

= Insert lines in order of increasing slope

1
2

4 Slope
5 - -
Topological line
T oo ol %
-+~ -+~ -4 4
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Upper horizon tree (UHT) — init. construction

= Insert lines in order of decreasing slope
= Each new line starts above all the current lines
= The uppermost face = convex polygonal chain

= Walk left to right along the chain
to determine the intersection

= Never walk twice over segment

— Such segment is no longer part of
the upper chain

— O(n) segments in UHT
=> O(n) initial construction

_ . (after nlog n sorting of the lines)
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Upper horizon tree (UHT) — update

= After the elementary step

= Two edges swap position along
the sweep line

= Lower edge | -
— Reenter to UHT
— Terminate at nearest edge of UHT
— Start in edge below in the current cut
— Traverse the face in CCW order ’

— Intersection must exist, as | has lower-...
slope than the other edge from v
and both belong to the same face

- o —f—
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Data structures for topological sweep alg.

Topological sweep line algorithm uses 5 arrays:

1. Line equation coefficients — E [1:n]

2. Upper horizon tree — UHT [1:n]
3. Lower horizon tree — LHT [1:n]
4. Order of lines cut by the sweep line — C [1:n]

5. Edges along the sweep line — N [1:n]

6. Stack for ready vertices (events) —-S

(n number of lines)

- =~ -
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1) Line equation coefficients E [1:n]

%Xé = Array of line equation coefs. E
: — Contains coefficients a, and b,
of line equations y = ax + b,

6) — E is indexed by the line index
— Lines are ordered according to

Array of line _ )
equations E their slope (angle from -90° to
y=ax+h 90°)

oaa A~ W N B
Q
W
O|T|T|T
w

- —:_ —
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2) and 3) — Horizon trees UHT and LHT

Their intersection is
used for searching
of legal steps

(right points)

- the shorter edge wins

UHT array
Delimiting
lines indices

1 1
5 UHT 5 LHT
3 3
4 4
5 Topological line 6 S Topological line g
LHT array =  Store pairs of line indices in E
Delimiting that delimit segment [; to the left
lines indices .
and to the right
1 |- | 6= Unlimited line has “indices”
2 |—oo| 1 [o0, +oo]
= One additional vertical line
3 | — 1 e
— prevents the tree from splitting into
4 | —oo 3 forest of trees
5 | —o 4 — is inserted first and never trimmed
' T — S [~oo, +00] for UHT
6 | +oo | — — _is [+o0, —co] for LHT

(28 / 38)
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4) Order of lines cut by sweep line — C [1:n]

= The topological sweep line cuts each line once

= Order of these cuts (along the topological sweep
line) is stored in array C as a sequence of line

Indices
= [For the initial leftmost cut, CUT Lines C
. . Index f -
the order is the same as in E porting lines.
= Index ci addresses I-th line fromtop «c1|1
along the sweep line c2 |2
c3|3
c4 |4
Co |5
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5) Edges along the sweep line — N [1:n]

= Edges intersected by the topological sweep line are
stored here (edges along the sweep line)

= Instead of endpoints themselves, we store the
iIndices of lines whose intersections delimit the edge

= Order of these edges IS  CUT edges N

Pairs of line indices

the same as in C delimiting the edge
(this Is the way used In c1 [ —oo] 2
the original paper) c2 | —oo| 1

= Index ci addresses i-th |~ °
c4d | —oo| 5

edge from top along the . —1—

sweep line

- S~ =
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6) Stack S

= The exact order of events is not important
= Alg. can process any of the “ready vertex”

= Event queue Is therefore replaced by a stack
(faster — O(1) instead of O(log n) of the queue)

= The stack stores just the upper edge ¢, ~ 21¢KS

Ready vertex
. . first edge idx
= Intersection in the ready vertex b
IS computed between stored ¢; and c;,,

c4
cl

- S~ =
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Topological sweep line demo

1
Ziik\ff%if;;;; Input
= setoflines L in the plane

= ordered in increasing slope
| (-90° to 90°), simple,

Array of line _

equations E not vertical

y=ax+Dh . .
= line parameters in array E

a, | by

2

o B~ W N B
Q
w

O |0 |0 |T
w
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1. Initial leftmost cut - C

3% cut = Store the line indices into the
3 Cut lines array C

37, o .
4% in increasing slope order

5 _5 N
Topological line

Array of line CUT Lines C
equations E Indexes of sup-
y=ax+b porting lines
1la,|b, cl|1l
2ay|b, c2|2
3|38z | bs c3|3
41a,|b, c4 |4
5|85 | bs c5(5

—- —:_ —_—
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1. Initial leftmost cut - N

4C

5 _5 N
Topological line

Array of line

equations E
y=ax+b

b,

2

w

N

b
b
b
b

5

>0 A W N P

indices of lines

+

DCGI

Prepare array N for endpoints of
the cutted edges (resp. for line
Indices delimiting these edges)

CUT edges N CUT Lines C

Pairs of line indices
delimiting the edge

cl
c2
c3
c4
CS

818 [8 (8 |8

cl
c2
c3
c4
CS

Indexes of sup-
porting lines

G WIN|F
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2a) Compute Upper Horizon Tree - UHT

1 C 1

2L _euT 2 UHT
C3

e :

4_¢ 451

5 _5 N
Topological line

Array of line UHT array

Topological line 6

CUT edges N CUT Lines C

Indexes of sup-
porting lines

equations E  Delimiting Pairs of line indices
y=ax+b lines indices delimiting the edge
1la,|b, 1|—ocof 2 Cl | —oo| o
2|a,|b, 2|—00| 5 C2 | —©| o0
3|as| b, 3|—o| 5 c3 | —oo|
41a,|b, 4| —oo| 5 cd | —oo| oo
5|8z | bs S| —x| 6 c5 | —oo| o
6| —oo| +oo

Inserted first, never changed

cl
c2
c3
c4
CS

G WIN|F
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2b) Compute Lower Horizon Tree - LHT

&% cut 2 UHT > LHT
%
C3
3 ¢, 3 3
4_ < 4 4
5 75 o 5 o 5 o v
Topological line Topological line 6 Topological line 6
Array of line UHT array LHT array CUT edges N CUT Lines C Stack S
equationsE Delimiting Delimiting Pairs of line indices Indexes of sup- Ready vertex
y=ax+b lines indices lines indices  delimiting the edge porting lines first edge idx
1la,|b,| 1|-| 2| 1|-0| 6] cl|—o| | c1|1
2|a,|b,| 2|-ow| 5| 2|-| 1| c2|—o| o] c2]|2
3lag|b; 3|—w| 5] 3|—oc0| 1| €3 |- oo 3|3
4|a,|b,| 4|-oo| 5| 4|-| 3| c4|-»| | c4|4
6| —oo| too 6| +oo | —o0

R sl Inserted first, never changed
- -+~ -4
DCGI Felkel: Computational geometry _
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3a) Determine right delimiters of edges - N

18 curt 1 UHT 1

2 2 2
Cs

3 % 3 3

4 z 4 451

5 5 N
Topological line

Array of line UHT array

5 Topological line

LHT array CUT edges N CUT Lines C

Pairs of line indices
delimiting the edge

equations E Delimiting Delimiting
y=ax+h lines indices lines indices
1la,|b,| 1]|-| 2| 1|-w| 6] c1
2|a,|b,| 2|-w| 5| 2|-w| 1] c2
3|as|by] 3|-o| 5| 3|-ow| 1| c3
5|ag|b;| 5|-| 6| 5|-ow| 4] c5
6| —o0| +oo 6| +oo
- =
. 4

6

—oo| 2
—oo| 1
—wo| 5
—o| 5
—oo| 4

Felkel: Computational geometry
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LHT

Topological line

Indexes of sup-
porting lines

cl
c2
c3
c4
CS

G WIN|F

_oo/‘
Intersect the trees — take the shorter edge

6
Stack S

Ready vertex
first edge idx



3b) Ready vertices =

int. of neighbors — S

18 curt 1 UHT 1

2 2 2
Cs

3 %?3/ 3 3

4 Co 4 451

5 Topological line

Array of line UHT array

equations B e T dioes
y=ax+hb

1(a;|b; 1|—oo| 2
2|a,|b, 2|—o| 5
3lag|b; 3|—oo| 5
41a,|b, 4| —c0| 5
5|ag|bg S5|—o0| 6
6| —oco| +c0

5 Topological line

6

LHT

Topological line

6

LHT array CUT edges N CUT Lines C Stack S

Indexes of sup-
porting lines

O O A W DN P

Delimiting Pairs of line indices
lines indices  delimiting the edge
— 00 6| cl |—oo /2
—00 1] c2 | — \’lj
—00 1] c3 | —
—00 3] c4 |-
—00 4] c5 | —o \4
+00 | —00

C
c2
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4a) Pop ready vertex from S — process c4

18 cut 1 UHT 1

2 2 2
Cs

3 %?3/ 3 3

4 z 4 451

5 5 o
Topological line

Array of line UHT array

equations B e T dioes
y=ax+hb

1(a;|b; 1|—oo| 2
2|a,|b, 2|—of 5
3lag|b; 3|—o| 5
41a,|b, 4| —co| 5
5|ag|bg S|—o0| 6
6| —oof| +c0

S Topological line

6

LHT

Topological line

v
6

LHT array CUT edges N CUT Lines C Stack S

Indexes of sup-
porting lines

o O A W DN P

Delimiting
lines indices
—o | 6] cl
—oo | 1] c2
—oo | 1] c3
—o | 3| c4
—oo | 4] c5
+00 | —o0

Pairs of line indices
delimiting the edge

—oo| 2
—00

—0oo| S
—0oo| S
—oo| 4

cl
c2
c3
cd
(13

G~ |WIN|PF
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first edge idx

c4
cl
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4b) Swap lines ¢4 and ¢c5 —-swap 4 and 5

18 cut 1 UHT 1

2 2 2
Cs

3 %?3/ 3 3

4 z 4 451

5 5 N
Topological line

Array of line UHT array

equations B e T dioes
y=ax+hb

1(a;|b; 1|—oo| 2
2|a,|b, 2|—of 5
3lag|b; 3|—o| 5
41a,|b, 4| —co| 5
5|ag|bg S|—o0| 6
6| —oof| +c0

S Topological line

6

LHT

Topological line

6

LHT array CUT edges N CUT Lines C Stack S

Indexes of sup-
porting lines

o O A W DN P

Delimiting
lines indices
—o | 6] cl
—oo | 1] c2
—oo | 1] c3
—o | 3| c4
—oo | 4] c5
+00 | —o0

Pairs of line indices
delimiting the edge

|k~ |01

cl
c2
c3
cd
(13

AW |IN]|PF
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4c) Update the horizon trees — UHT and LHT

3
4

W
C

5 5 N
Topological line

Array of line UHT array

equations E

o B~ W N B

y=ax+Db

a, | by

2

Q
w

O |0 |0 |T
w

N
o O A WO N P

Delimiting
lines indices

OO | O[O0

+ 00

5 Topological line

Reentered

part

o—e 6

N

o~ W

Topological line

o—e
LHT

v
6

LHT array CUT edges N CUT Lines C Stack S

Indexes of sup- Ready vertex

O O A W DN P

Delimiting
lines indices

—o0o| 6] cl

—oo | 1| c2

—oo| 1] c3
5| 3| c4
4| 3| ¢S5

+00 | —00

Pairs of line indices
delimiting the edge

—o| 2
—o| 1
—w| 5§
—o| 4
—o| 5

porting lines

cl
c2
c3
c4
CS

AhAlOa|lwWw|IN]|F

upper edge id

cl
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4d) Determine new cut edges endpoints — N

1
5 LHT
3
Reentered 4
5 Topological line 5 Topological line opart‘ 6 S Topological line g
Array of line UHT array LHT array CUT edges N CUT Lines C Stack S
equationsE Delimiting Delimiting Pairs of line indices Indexes of sup- Ready vertex
y=ax+b lines indices lines indices  delimiting the edge porting lines upper edge id»
1|a,|b, 1{=c0| 2| 1| —c0o| 6] Ccl |—-c0| 2| cl|1
2|a,|b, 2 | —o0 5 2| —o0 1| c2 |—o0| 1] c2|2
3|az| by 3|-c0| 5| 3| —co| 1] €3 |-c0o| 5| c3]|3
41a,|b,| 4| 5| 6] 4| 3 3><c4 4| 3| c4|5
5lag|bs| 5| 4| 6] 5| 4| 3[*5| 5| 3| c5|4 cl
6 | —co | +o0 6| +oo | —o0
3 /‘

- \Z 7 =
- o —f— 3
= = A+ 4 Intersect the trees — take the shorter edge
-+ + —+ 3
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4e) Intersect with neighbors — push into S

1
5 LHT
3
Reentered 4
5 Topological line 5 Topological line OFEI‘ 6 S Topological line g
Array of line UHT array LHT array CUT edges N CUT Lines C Stack S
equationsE -Delir-niti-ng -Delir_niti_ng Pai_rs'o_fline indices Index_esofsup- Readyvertgx
y=ax+b lines indices lines indices  delimiting the edge porting lines upper edge id>
1(a;|b; 1l |—c0 2 1| —o0 6] cl|—-o| 2] c1]|1
2a,|b, 2|—c0| 5| 2| —o0 1] c2 |—co| 1| c2|2
3la,|by| 3|-w| 5| 3| -| 1| 8 |-|(5) c373]
4la,|b,| 4| 5| 6| 4| 5| 3| c4 4(27c5\/c3
5la.|b;| 5| 4| 6| 5| 4| 3| 5| 5| 3| 5|4 c1
6| —oco | +o0 6| +oo | —c0

Intersections of neighbors - into stack

- e —f—
e S =~ == ——
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4a) Pop ready vertex from S — process c3

1
UHT 5 LHT
3
4
5 Topological line 5 Topological line 6 S Topological line g
Array of line UHT array LHT array CUT edges N CUT Lines C Stack S
equationsE Delimiting Delimiting Pairs of line indices  Indexes of sup- Ready vertex
y=ax+b lines indices lines indices  delimiting the edge porting lines first edge idx
1la,|b,| 1|-| 2| 1| -o| 6] cl|-o| 2| c1|1
2|a,|b, 2 | —o0 5 2| —o0 1] c2|—-c0| 1] 2|2
3|as|bs 3| —c0 5 3| —o0 1] c3|—-0| 5 033\
41a,|b, 41 5| 6] 4 5| 3| c4| 4| 3| c4|5 c3
5| ag | bsg 5/ 4| 6| 5 31 <5+ 5} 3} «c5|4 cl
6 | —oo | +oo 6| too | —oc0

- —:_ ——
e S =~ == ——
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4b) Swap lines ¢4 and ¢c5 —-swap 4 and 5

1
UHT 5 LHT
3
4
5 Topological line 5 Topological line 6 S Topological line g
Array of line UHT array LHT array CUT edges N CUT Lines C Stack S
equationsE Delimiting Delimiting Pairs of line indices Indexes of sup- Ready vertex
y=ax+b lines indices lines indices  delimiting the edge porting lines first edge idx
1la,|b,| 1|-| 2| 1| -o| 6] cl|-o| 2| c1|1
2|a,|b, 2 | —o0 5 2| —o0 1] c2|—-c0| 1] 2|2
3lay|by| 3|-| 5| 3| - 1| 3| 4| 3| c3|5
4la,|b,| 4| 5| 6] 4| 5| 3| c4|-| 5| c4|3
5| ag | bsg 5/ 4| 6| 5 31 <5+ 5} 3} «c5|4 cl
6 | —oo | +oo 6| too | —oc0
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4c) Update the horizon trees — UHT and LHT

UHT > LHT
3
4
5 Topological line 5 Topological line 6 S Topological line g
Array of line UHT array LHT array CUT edges N CUT Lines C Stack S
equationsE Delimiting Delimiting Pairs of line indices  Indexes of sup- Ready vertex
y=ax+b lines indices lines indices  delimiting the edge porting lines first edge idx
1la,|b,| 1|-| 2| 1| -o| 6] cl|-o| 2| c1|1
2|a,|b, 2 | —o0 5 2| —o0 1] c2|—-c0| 1] 2|2
3|as| b, 3| 5| 4| 3 5| 1| c3| 4| 3| c3|5
41a,|b, 41 5| 6] 4 5| 3| c4|—-c0| 5| c4|3
5|ag|bs 5/ 3| 6| 5 3| 1] c5| 5| 3| c5|4 cl
6 | —oo | +oo 6| too | —oc0
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4d) Determine new cut edges endpoints

1
UHT 5 LHT

3

4
5 Topological line S Topological line 6 S Topological line g
Array of line UHT array LHT array CUT edges N CUT Lines C Stack S
equationsE Delimiting Delimiting Pairs of line indices Indexes of sup- Ready vertex
y=ax+b lines indices lines indices  delimiting the edge porting lines first edge idx
1la,|b,| 1|-| 2| 1| -o| 6] cl|-o| 2| c1|1
2|a,|b, 2 | —o0 5 2| —o0 1] c2|—-c0| 1] 2|2
3|az| by 3| 5| 4] 3| S| 1f(.3| 3| 1| c3|5
41a,|b,| 4| 5| 6] 4 53>Zc454c43
5|ag|bs 5/ 3| 6| 5 3| 1] c5| 5| 3| c5|4 cl

6 | —oo | +oo 6| too | —oc0
=V /‘

. & — <
= = A+ 4 Intersect the trees — take the shorter edge
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4e) Intersect with neighbors — push into S

UHT > LHT

3

4
5 Topological line S Topological line 6 S Topological line g
Array of line UHT array LHT array CUT edges N CUT Lines C Stack S
equationsE Delimiting Delimiting Pairs of line indices  Indexes of sup- Ready vertex

y=ax+b lines indices lines indices  delimiting the edge porting lines first edge idx
1la,|b,| 1|-| 2| 1| -o| 6] cl|-o| 2| c1|1
2|a,|b, 2 | —o0 5 2| —o0 1] c2|—-c0| 1] 2|2
3|az| by 3| 5| 4| 3| S| 1] c3| 3| 1| c3|5
4la,|b,| 4| 5| 6| 4| 5 3\(:4 5| (4| cal 3| — -+ c4
5|ag|bs 5/ 3| 6| 5 3| 1| c5| 5| (3]|)Ycor4 cl
6 | —oo | +oo 6| too | —oc0
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Topological sweep algorithm

TopoSweep(L)
Input:  Set of lines L sorted by slope (-90° to 90°), simple, not vertical
Output: All parts of an Arrangement A(L) detected and then destroyed
1. Let C be the initial (leftmost) cut — lines in increasing order of slope
2. Create the initial UHT and LHT incrementally:
a) UHT by inserting lines in decreasing order of slope
b) LHT by inserting lines in increasing order of slope
3. By consulting UHT and LHT
a) Determine the right endpoints N of all edges of the initial cut C
b) Store neighboring lines with common endpoints into stack S
(ready vertices)
4. Repeat until stack not empty
a) Pop next ready vertex from stack S (its upper edge c;)
b) Swap these lines within the cut C (¢, <->c;,,)
c) Update the horizon trees UHT and LHT
d) Consulting UHT and LHT determine new cut edges endpoints N

_ _~~e) If new neighboring edges share an endpoint -> push them %
> -~ -+
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Getting of cut edges from UHT and LHT

= forlinesi=1ton

— Compare UHT and LHT edges on line |

— Set the cut lying on edge i to the shorter edge of these
= Order of the cuts along the sweep line

— Order changes at the intersection v only (neighbors)

— Order of remaining cuts not incident with intersection v
does not change

= After changes of the order, test the neighbors for
Intersections

— Store Iintersections right from sweep line into the stack

- e —f—
+++++
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Complexity

= O(n?) intersections
=> O(n?) events (elementary steps)

= O(1) amortized time for one step
=> O(n?) time for the algorithm

Amortized time

even though a single elementary step can take
more than O(1) time, the total time needed to
perform O(n?) elementary steps is O(n?), hence
the average time for each step is O(1).

-
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