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Windowing queries - examples

 Interaction in GIS
– Select subset by outlining
– Zoom in and re-center

 Circuit board inspection,…
[Vakken]

[Berg]
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Talk overview

 Windowing intro
 Windowing of axis parallel line segments in 2D

(interval tree - IT)
– Opak) Line stabbing (interval tree with sorted lists)
– A) Line segment stabbing (IT with range trees)
– B) Line segment stabbing (IT with priority search trees)

 Windowing of line segments in general position
– segment tree
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Windowing versus range queries

 Range queries (range trees in Lecture 03)
– Points
– Often in higher dimensions

 Windowing queries
– Line segments, curves, …
– Usually in low dimension (2D, 3D) 
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 Preprocess the data into a data structure 
– so that the ones intersected by the query rectangle can 

be reported efficiently

 Two cases

Windowing queries

Axis parallel line segments Arbitrary line segments
(non-crossing)

[Vakken]
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Windowing of axis parallel line segments

Window query
 Given 

– a set of orthogonal line segments S (preprocessed),
– and orthogonal query rectangle W = [ x : x’ ] μ [ y : y’ ]

 Count or report all the line segments of S that 
intersect W

 Such segments have
a) 1 endpoint in
b) 2 end points in – Included
c) no end point in – Cross over

[Mount]

a)
a)

b)
c)



Felkel: Computational geometry

(7 / 46)

Line segments with 1 or 2 points inside

a) 1 point inside
– Use a range tree (Lesson 3)
– O(n log n) storage
– O(log2 n + k) query time or
– O(log n + k) with fractional 

cascading

b) 2 points inside – as a) 1 point inside
– Avoid reporting twice

1. Mark segment when reported (clear after the query)
2. When end point found, check the other end-point.

Report only the leftmost or bottom endpoint

a)
a)

b)
c)
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Line segments that cross over the window

c) No points inside
– not detected using

a range tree 
– Cross the boundary twice 

or 
contain one boundary edge

– It is enough to 
detect segments intersected by the left and bottom
boundary edges (not having end point inside)

– For left boundary: Report the segments intersecting 
vertical query line segment (B)

– Let’s discuss vertical query line first (A)
– Bottom boundary is rotated 90°
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Talk overview

 Windowing intro
 Windowing of axis parallel line segments in 2D

(interval tree - IT)
– Opakování) Line stabbing (interval tree with sorted lists)
– A) Line segment stabbing (IT with range trees)
– B) Line segment stabbing (IT with priority search trees)

 Windowing of line segments in general position
– segment tree
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A: Segment intersected by vertical line->1D

 Query line l := (x=qx)
Report the segments 
stabbed by a vertical line 
= 1 dimensional problem

(ignore y coordinate)

=> Report the interval 
containing query point qx
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Interval tree principle

L(v)
R(v)

[Vigneron]

L R

M
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Static interval tree [Edelsbrunner80]

1 2 3 4 5 6

1 3 5

2

4

2,4 6,5

1 3
5 6

[Kukral]
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Primary structure – static tree for endpoints

1 2 3 4 5 6

1 3 5

2

4

2,4 6,5

1 3

v = vertex
d(v)= midpoint of 

segment 
endpoints

5 6

[Kukral]
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Secondary lists – sorted segments in M

1 2 3 4 5 6

1 3 5

2

4

2,4 6,5

1 3
ML(v) MR(v)

ML(v) – intervals containing v
(sorted of ascending lo points)

MR(v) – intervals containing v
(descending 
hi endpoints)

5 6

[Kukral]
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Interval tree construction (all intervals at once)

ConstructIntervalTree( S )         // Intervals all active – no active lists
Set S of intervals on the real line – on x-axis
The root of an interval tree for S

1. if (|S| == 0) return null // no more
2. else
3. xMed = median endpoint of intervals in S // median endpoint
4. L = { [xlo, xhi] in S | xhi < xMed } // left of median
5. R = { [xlo, xhi] in S | xlo > xMed } // right of median
6. M = { [xlo, xhi] in S | xlo <= xMed <= xhi } // contains median
7. ML = sort M in increasing order of xlo // sort M
8. MR = sort M in decreasing order of xhi
9. t = new IntTreeNode(xMed, ML, MR) // this node
10. t.left = ConstructIntervalTree(L) // left subtree
11. t.right = ConstructIntervalTree(R) // right subtree
12. return t

[Mount]
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Line stabbing query for an interval tree
Stab( t, xq)

IntTreeNode t, Scalar xq
prints the intersected intervals

1. if (t == null) return // fell out of tree
2. if (xq < t.xMed) // left of median?
3. for (i = 0; i < t.ML.length; i++)  // traverse ML
4. if (t.ML[i].lo <= xq) print(t.ML[i]) // ..report if in range
5. else break // ..else done
6. stab(t.left, xq) // recurse on left
7. else  // (xq ¥ t.xMed) // right of or equal to median
8. for (i = 0; i < t.MR.length; i++) { // traverse MR
9. if (t.MR[i].hi ¥ xq) print(t.MR[i]) // ..report if in range
10. else break // ..else done
11. stab(t.right, xq) // recurse on right

Note: Small inefficiency for xq == t.xMed – recurse on right
[Mount]
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Complexity of line stabbing via interval tree

 Construction - O(n log n) time
– Each step divides at maximum into two halves or less

(minus elements of M) => tree height O(log n)
– If presorted the endpoints in three lists L,R,M 

then median in O(1) and copy to new L,R,M in O(n)]

 Vertical line stabbing query - O(k + log n) time
– One node processed in O(1 + k’), k’=reported intervals
– v visited nodes in O(v + k), k=total reported intervals
– v = tree height = O(log n)

 Storage - O(n)
– Tree has O(n) nodes, each segment stored twice 

(two endpoints)
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Talk overview

 Windowing intro
 Windowing of axis parallel line segments in 2D

(interval tree - IT)
– Opakování) Line stabbing (interval tree with sorted lists)
– A) Line segment stabbing (IT with range trees)
– B) Line segment stabbing (IT with priority search trees)

 Windowing of line segments in general position
– segment tree
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A: Segment intersected by vertical line - 1D

 Query line l := (x = qx)
Report the segments 
stabbed by a vertical line 
= 1 dimensional problem

(ignore y coordinate)

=> Report the interval 
containing query point qx

DS: Interval tree [Berg]
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A: Segment intersected by vertical line - 2D

 Query line l := qx μ [–¶ : ¶ ]

 Horizontal segment of M stabs the query 
line l iff its left endpoint lies in 
halph-space

(–¶ : qx] μ [- ¶ : ¶ ]
 In IT node with stored median xMid

report all segments from M
– whose left point lies in 

(–¶ : qx] 
if l lies left from xMid

– whose right point lies in 
(qx : +¶] 
if l lies right from xMid

+
;

l

Inspired by [Berg]

xMidqx

ll
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B: Segment intersected by vertical line segment

 Query segment q := qx μ [qy : q’y ]

 Horizontal segment of M stabs the query 
segment q iff its left endpoint lies in 
semi-infinite rectangular region 

(–¶ : qx] μ [qy ; q’y ]
 In IT node with stored median xMid

report all segments 
– whose left point lies in 

(–¶ : qx] μ [qy ; q’y ]
if q lies left from xMid

– whose right point lies in 
(qx : +¶] μ [qy ; q’y ]
if q lies right from xMid

[Berg]

xMidqx
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Data structure for endpoints

 Storage of ML and MR 
– Sorted lists not enough for line segments
– Use two range trees

 Instead O(n) sequential search in ML and MR 
perform O(log n) search 
in range tree with fractional cascading
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2D range tree (without fractional casc. - see more in Lecture 3)
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Complexity of line segment stabbing

 Construction - O(n log n) time
– Each step divides at maximum into two halves L,R

or less (minus elements of M) => tree height O(log n)
– If the range trees are efficiently build in O(n)

 Vertical line segment stab. q. - O(k + log2 n) time
– One node processed in O(log n + k’), k’=reported inter.
– v visited nodes in O(v log n + k), k=total reported inter. 
– v = tree height = O(log n)
– O(k + log2 n) time - range tree with fractional cascading
– O(k + log3 n) time - range tree without fractional casc.

 Storage - O(n log n) 
– Dominated by the range trees
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Talk overview

 Windowing intro
 Windowing of axis parallel line segments in 2D

(interval tree - IT)
– Opakování) Line stabbing (interval tree with sorted lists)
– A) Line segment stabbing (IT with range trees)
– B) Line segment stabbing (IT with priority search trees)

 Windowing of line segments in general position
– segment tree
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Priority search trees [McCreight85]

 Priority search trees – in case c) on slide 8
– Exploit the fact that query rectangle in range queries is 

unbounded
– Can be used as secondary data structures for both left 

and right endpoints (ML and MR) of segments 
(intervals) in nodes of interval tree

– Improve the storage to O(n) for horizontal segment 
intersection with window edge (Range tree has O(n log n))

 For cases a) and b) - O(n log n) remains
– we need range trees for windowing segment endpoints 
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Rectangular range queries variants

 Let P = { p1, p2,…, pn } is set of points in plane
 Goal: rectangular range queries of the form

(–¶ : qx] μ [qy ; q’y ]
 In 1D: search for nodes v with vx œ (–¶ : qx]

– range tree O(log n + k) time
– ordered list O(1 + k) time

(start in the leftmost, stop on v with vx>qx)
– use heap  O(1 + k) time

(traverse all children, stop when vx>qx)
 In 2D – use heap for points with x œ (–¶ : qx]

+ integrate information about y-coordinate
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Heap for 1D unbounded range queries

 Traverse all children, stop when vx>qx

 Example: Query (–¶:10]

6

50 100

12

7

9

11

99 19

stop

report

[Berg]
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Heap for 1D unbounded range queries

 Traverse all children, stop when vx>qx

 Example: Query (–¶:10]

6

50 100

12

7

9

11

99 19

stop

report

[Berg]

xMidqx

ll
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Priority search tree (PST)
 Heap in 2D can incorporate info about both x,y

– BST on y-coordinate (horizontal slabs) ~ range tree
– Heap on x-coordinate (minimum x from slab along x)

 If P is empty, PST is empty leaf
 else

– pmin = point with smallest x-coordinate in P --- a heap root
– ymed = y-coord. median of points P \ {pmin} --- BST root
– Pbelow := { p œ P \ {pmin} : py § ymed}
– Pabove := { p œ P \ {pmin} : py > ymed}

 Point pmin and scalar ymed are stored in the PST root
 The left subtree is PST of Pbelow

 The right subtree is PST of Pabove



Felkel: Computational geometry

(31 / 46)

Priority search tree construction example

11 15
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4
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9
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6

[Schirra]

y

x

§y

>y

Pmin
ymed
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Priority search tree definition
PrioritySearchTree( P )

set P of points in plane
priority search tree  T

1. if P=« then PST is an empty leaf
2. else
3. pmin = point with smallest x-coordinate in P // heap on x root
4. ymed = y-coord. median of points P \ {pmin} // BST on y root
5. Split points P \ {pmin} into two subsets – according to ymed
6. Pbelow := { p œ P \ {pmin} : py § ymed}
7. Pabove := { p œ P \ {pmin} : py > ymed}
8. T = newTreeNode() Notation in alg: 
9. T.p = pmin // point [ x, y ] … p(v)
10. T.y = ymid // skalar … y(v)
11. T.left = PrioritySearchTree( Pbelow ) … lc(v)
12. T.rigft = PrioritySearchTree( Pabove ) … rc(v)

13. O( n log n ) , but O( n ) if presorted on y-coordinate and bottom up
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Query Priority Search Tree
QueryPrioritySearchTree( T, (–• : qx] ¥ [qy ; q’y ] )

A priority search tree and a range, unbounded to the left
All points lying in the range 

1. Search with qy and q’y in T // BST on y-coordinate – select y range     
Let νsplit be the node where the two search paths split (split node)

2. for each node ν on the search path of qy or q’y // points along the paths
3. if p(ν) œ (–¶ : qx] μ [qy ; q’y ] then report p(ν) // starting in tree root

4. for each node ν on the path of qy in the left subtree of νsplit // inner trees
5. if the search path goes left at ν
6. ReportInSubtree( rc(ν), qx )   // report right subtree
7. for each node ν on the path of q’y in right subtree of νsplit
8. if the search path goes right at ν
9. ReportInSubtree( lc(ν), qx )   // rep. left subtree



Input:
Output:

Felkel: Computational geometry

(34 / 46)

Reporting of subtrees between the paths
ReportInSubtree( ν, qx )

The root ν of a subtree of a priority search tree and a value qx.
All points in the subtree with x-coordinate at most qx.

1. if ν is not a leaf and x( p(ν) ) § qx // x œ (–¶ : qx] -- heap condition

2. Report p(ν).
3. ReportInSubtree( lc(ν), qx )
4. ReportInSubtree( rc(ν), qx )
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1. select y range (y-BVS~ 1D range tree)
2. report points on paths (x-heap)
3. report subtrees (x-heap)

Priority search tree query
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vsplit

x too high – stop

x ok – report this point

Based on [Schirra] [Berg]

y-range path

qy

q’y

Given interval ymin..ymax

Given xmax
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Priority search tree complexity

For set of n points in the plane
 Build O(n log n)
 Storage O(n)
 Query O( k + log n)

– points in query range (–¶ : qx] μ [qy ; q’y ])
– k is number of reported points

 Use PST as associated data structure for interval 
trees for storage of M
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Talk overview

 Windowing intro
 Windowing of axis parallel line segments in 2D

(interval tree - IT)
– Opakování) Line stabbing (interval tree with sorted lists)
– A) Line segment stabbing (IT with range trees)
– B) Line segment stabbing (IT with priority search trees)

 Windowing of line segments in general position
– segment tree
– windowing of segments in general position
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 Two cases of intersection
a,b) Endpoint inside the query window => range tree
c) Segment intersects side of query window => ???

 Intersection with BBOX (segment bounding box)?
– Intersection with 4n sides
– But segments may not intersect the window –> query y

Windowing of arbitrary oriented line segments
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Talk overview

 Windowing intro
 Windowing of axis parallel line segments in 2D

(interval tree - IT)
– Opakování) Line stabbing (interval tree with sorted lists)
– A) Line segment stabbing (IT with range trees)
– B) Line segment stabbing (IT with priority search trees)

 Windowing of line segments in general position
– segment tree
– windowing of segments in general position
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Segment tree [Bentley, 1977]

 Exploits locus approach 
– Partition parameter space into regions of same answer
– Localization of such region = knowing the answer

 For given set S of n intervals (segments) on real line
– Finds m elementary intervals (induced by interval end-points)

– Partitions 1D parameter space into these elementary 
intervals

– Stores intervals si with the elementary intervals
– Reports the intervals si containing query point qx.

p1-∞ p2 p3 p4 +∞ 



[p2: p3][p2: p2]
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Segment tree example

x

Intervals

Elementary Intervals

[p1: p1]
…

…

Intervals
S = { [x1 : x1’], [x2 : x2’], …,  [xn : xn’] } 
si = [xi : xi’]

(-∞ : p1 ) (p1 : p2 ) (pm : +∞ )
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Segment tree definition

Segment tree
 Skeleton is a balanced binary tree T
 Leaves ~ elementary intervals Int(v)
 Internal nodes v

~ union of elementary intervals of its children 
– Store: 1. interval Int(v) = union of elementary intervals

of its children 
2. canonical set S(v) of intervals [x : x’] œ S

– Holds Int(v) Œ [x : x’] and Int(parent(v)] [x : x’] 
(node interval is not larger than a segment)

– Intervals [x : x’] are stored as high as possible, such that 
Int(v) is completely contained in the segment

segments si
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Segments span the slab
Segments span the slab of the node, 
but not of its parent
(stored as up as possible)

Int(v2)
Int(v1)

Int(v3)

Int(vj) Œ si

and 
Int(parent(vj)] si
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Query segment tree
QuerySegmentTree(v, qx)

The root of a (subtree of a) segment tree and a query point qx
All intervals in the tree containing qx.

1. Report all the intervals si in S(ν). // current node
2. if ν is not a leaf
3. if qx œ Int( lc(ν) ) // go left
4. QuerySegmentTree( lc(ν), qx )
5. else // or go right
6. QuerySegmentTree( rc(ν), qx )

Query time O( log n  + k ), where k is the number of reported intervals
Height O( log n ), O( 1 + kv ) for node

Storage O( n log n )
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Segment tree construction 
ConstructSegmentTree( S )

Set of intervals S - segments
segment tree

1. Sort endpoints of segments in S -> get elemetary intervals …O(n log n)
2. Construct a binary search tree T on elementary intervals …O(n)

(bottom up) and determine the interval Int(v) it represents
3. Compute the canonical subsets for the nodes (lists of their segments):
4. v = root( T )
5. for all segments si = [x : x’] œ S
6. InsertSegmentTree( v, [x : x’] )



Input:
Output:
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Segment tree construction – interval insertion

InsertSegmentTree( v, [x : x’] ) 
The root of (a subtree of) a segment tree and an interval.
The interval will be stored in the subtree.

1. if Int(v) Œ [ x : x’ ] // Int(v) contains si = [ x : x’ ]
2. store [ x : x’ ] at ν
3. else if Int( lc(ν) ) ∩ [ x : x’ ] ∫ «
4. InsertSegmentTree( lc(ν), [x : x’ ] )
5. if Int( rc(ν) ) ∩ [ x : x’ ] ∫ «
6. InsertSegmentTree(rc(ν), [x : x’ ] )

One interval is stored at most twice in one level =>
Single interval insert O( log n )
Construction total O( n log n )
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Segment tree complexity

A segment tree for set S of n intervals in the plane, 
 Build O(n log n)
 Storage O(n log n)
 Query O( k + log n)

– Report all intervals that contain a query point
– k is number of reported intervals
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Segment tree versus Interval tree

 Segment tree
– O(n log n ) storage x O(n) of Interval tree  
– But returns exactly the intersected segments si, interval 

tree must search the lists ML and/or MR 

 Good for 
1. extensions (allows different structuring of intervals) 
2. stabbing counting queries 

– store number of intersected intervals in nodes
– O(n) storage and O(log n ) query time = optimal

3. higher dimensions – multilevel segment trees
(Interval and priority search trees do not exist in ^dims)
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Talk overview

 Windowing intro
 Windowing of axis parallel line segments in 2D

(interval tree - IT)
– Opakování) Line stabbing (interval tree with sorted lists)
– A) Line segment stabbing (IT with range trees)
– B) Line segment stabbing (IT with priority search trees)

 Windowing of line segments in general position
– segment tree
– windowing of segments in general position
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Windowing of arbitrary oriented line segments

 Let S be a set of arbitrarily oriented line segments 
in the plane. 

 Report the segments intersecting a vertical query 
segment q := qx μ [qy : q’y ]

 Segment tree T on x intervals of segments in S
– node v of T corresponds to vertical slab Int(v) μ (-¶ : ¶)
– segments span the slab of the

node, but not of its parent
– segments do not intersect  

=> segments in the slab (node)
can be vertically ordered – BST
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Segments between vertical segment endpoints

 Segments (in the slab) do not mutually intersect
=> segments can be vertically ordered and stored in BST

– Each node v of the x segment tree 
has an associated y BST

– BST T(v) of node v stores the canonical subset S(v) 
according to the vertical order

– Intersected segments can be found by searching T(v) in 
O( kv + log n), kv is the number of intersected segments



Segments between vertical segment endpoints

 Segment s is intersected by vert.query segment q iff
– The lower endpoint (B) of q is below s and
– The upper endpoint (A) of q is above s
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A

B

A above
B below

A below
B below

A above
B below

A above
B above

A above
B below

q
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Windowing complexity

Structure associated to node (BST) uses storage 
linear in the size of S(v)

 Build O(n log n)
 Storage O(n log n)
 Query O( k + log2 n)

– Report all segments that contain a query point
– k is number of reported segments
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